ChemComm
Communication
(eqn (5)). This is a promising result in view of the synthesis data of the synthetic sample of 4 (1H and 13C NMR, IR, [a]D)
of many natural isoflavonoids with an aryl group possessing coincided with the reported data.16
ortho-hydroxy group(s).
In conclusion, an approach to the stereoselective synthesis
of isoflavans has been established based on the 1,2-shift of aryl
groups in flavan-3-ol derivatives and in situ alkylation by
organoaluminum reagents. The method was applied in the
synthesis of (ꢀ)-equol (4).
This work was supported by a Grant-in-Aid for Specially
Promoted Research (No. 23000006) from JSPS.
(5)
Notes and references
1 D. A. Smith and S. W. Banks, Phytochemistry, 1986, 25, 979.
2 G. G. J. M. Kuiper, J. G. Lemmen, B. Carlsson, J. C. Corton, S. H. Safe,
P. T. Saag, B. Burg and J.-A. Gustafsson, Endocrinology, 1998,
139, 4252.
Finally the enantiospecific synthesis of (ꢀ)-equol (4), a soy-derived
isoflavonoid known since 1932 is described.14 Recently, sizable
phytoestrogenic activity has been found in 4,15 making it the
current target of chemical synthesis.16
´
3 (a) A. Levai, J. Heterocycl. Chem., 2004, 41, 449; (b) A. Goel, A. Kumar and
A. Raghuvanshi, Chem. Rev., 2013, 113, 1614; (c) M. A. Selepe and F. R. V.
Heerden, Molecules, 2013, 18, 4739; (d) R. L. Farmer and K. A. Scheidt,
Chem. Sci., 2013, 4, 3304; (e) Z.-G. Feng, W.-J. Bai and T. R. R. Pettus,
Angew. Chem., Int. Ed., 2015, 54, 1864, and references therein.
4 M. F. Hashim, T. Hakamatsuka, Y. Ebizuka and U. Sankawa, FEBS Lett.,
1990, 271, 219.
5 (a) K. Suzuki, E. Katayama and G. Tsuchihashi, Tetrahedron Lett.,
1983, 24, 4997; (b) Y. Honda, E. Morita and G. Tsuchihashi, Chem.
Lett., 1985, 1153; (c) T. Saito, T. Suzuki, M. Morimoto, C. Akiyama,
T. Ochiai, K. Takeuchi, T. Matsumoto and K. Suzuki, J. Am. Chem.
Soc., 1998, 120, 11633.
6 For early examples on the use of the 1,2-shift to construct 3-aryl
isoflavones, see (a) A. C. Jain, P. D. Sarpal and T. R. Seshadri, Indian
J. Chem., 1965, 3, 369; (b) W. D. Ollis, K. L. Ormand and I. O. Sutherland,
Chem. Commun., 1968, 1237; (c) O. Prakash, S. Pahuja, S. Goyal, S. N.
Sawhney and M. Moriarty, Synlett, 1990, 337; (d) O. V. Singh,
C. P. Garg and R. P. Kapoor, Tetrahedron Lett., 1990, 31, 2747;
(e) T. Kinoshita, K. Ichinose and U. Sankawa, Tetrahedron Lett.,
1990, 31, 7355; ( f ) C. D. Gabbutt, J. D. Hepworth, B. M. Heron and
J.-L. Thomas, Tetrahedron Lett., 1998, 39, 881.
Scheme 4 outlines the synthesis of 4. The key intermediate
27 was prepared from the resorcinol derivative 21. The union
of 21 with epoxide 22 (499% e.e.)7 via the Mitsunobu
reaction gave ether 23 in 78% yield as an inseparable mixture
of diastereomers (93 : 7 ratio),13b which was used for the next
step. Regioselective cleavage of oxirane 23 gave bromohydrin 24
(87% yield) and its epimer 240 (4% yield), which were separated
using flash column chromatography (hexane/toluene/EtOAc =
5/5/1). After protection of 24 as a TES ether, the cyclization
precursor 25, thus obtained, was treated with Ph3MgLi to give
flavan 26 in 88% yield.13 After two-step conversion of 26 into
mesylate 27, treatment with AlH3 (CH2Cl2, 0 1C - room temp.,
2.5 h) cleanly afforded the desired isoflavan 28 in 85% yield.
Finally, two benzyl groups were removed by hydrogenolysis [H2,
Pd(OH)2/C, THF, MeOH, H2O (2/2/1), room temp., 45 min],
giving (ꢀ)-equol (4) as a white solid (99% e.e.).17 All the physical
7 H. Kawamoto, F. Nakatsubo and K. Murakami, Synth. Commun.,
1996, 26, 531.
8 See the ESI†.
9 An authentic sample of ent-7 was prepared by the C2-epimerization
of (ꢀ)-epicatechin (EC) (pH 8 phosphate buffer, 80 1C, 2 h), giving a
mixture of (ꢀ)-catechin and (ꢀ)-EC. Peracetylation followed by the
Kawamoto protocol, separation and mesylation gave ent-7. See the
ESI†.
10 (a) A. E. Finholt, A. C. Bond and H. I. Schlesinger, J. Am. Chem. Soc.,
1947, 69, 1199; (b) S. Raghavan, S. R. Reddy, K. A. Tony, C. N. Kumar,
A. K. Varma and A. Nangia, J. Org. Chem., 2002, 67, 5838.
11 In run 6, the isoflavene (3-aryl-4H-chromene) derivative was
obtained as a byproduct (16% yield). See the ESI†.
12 (a) J. Fried, C.-H. Lin and S. H. Ford, Tetrahedron Lett., 1969, 1379;
(b) R. T. Hansen, D. B. Carr and J. Schwartz, J. Am. Chem. Soc., 1978,
100, 2244; (c) K. Taya, T. Nagasawa and K. Suzuki, Synlett, 1997, 304.
13 (a) T. Higuchi, K. Ohmori and K. Suzuki, Chem. Lett., 2006, 35, 1006;
(b) K. Ohmori, M. Takeda, T. Higuchi, T. Shono and K. Suzuki,
Chem. Lett., 2009, 38, 934.
14 G. F. Marrian and G. A. D. Haslewood, Biochem. J., 1932, 1227.
15 (a) J.-P. Yuan, J.-H. Wang and X. Liu, Mol. Nutr. Food Res., 2007, 51, 765;
(b) P. J. Magee, Proc. Nutr. Soc., 2011, 70, 10; (c) R. L. Jackson, J. S. Greiwe
and R. J. Schwen, Nutr. Rev., 2011, 69, 432; (d) D. Shor, T. Sathyapalan,
S. L. Atkin and N. J. Thaycher, Eur. J. Nutr., 2012, 51, 389.
16 (a) J. M. Heemstra, S. A. Kerrigan, D. R. Doerge, W. G. Helferich and
W. A. Boulanger, Org. Lett., 2006, 8, 5441; (b) Y. Takashima and
Y. Kobayashi, Tetrahedron Lett., 2008, 49, 5156; (c) Y. Takashima,
Y. Kaneko and Y. Kobayashi, Tetrahedron, 2010, 66, 197; (d) J.-W. Lee
and B. List, J. Am. Chem. Soc., 2012, 134, 1824; (e) S. Yang, S.-F. Zhu,
C.-M. Zhang, S. Song, Y.-B. Yu, S. Li and Q.-L. Zhou, Tetrahedron,
2012, 68, 5172.
Scheme 4 Keys: (a) TMAD, n-Bu3P, toluene, 0 1C, 1 h (78%, dr = 93/7),
(b) Li2NiBr4, THF, 0 1C, 24 h (87%), (c) TESOTf, 2,6-lutidine, CH2Cl2, 0 1C,
20 min (97%), (d) PhMgBr, PhLi, HMPA, THF, ꢀ78 - 0 1C, 45 min (88%),
(e) n-Bu4NF, THF, 0 1C - RT, 15 min (95%), (f) MsCl, Et3N, CH2Cl2, 0 1C,
10 min (99%), (g) LiAlH4, AlCl3, CH2Cl2, 0 1C - RT, 2.5 h (85%), (h) H2,
ASCA-2 [5% Pd(OH)2/C], THF, MeOH, H2O, RT, 45 min (quant.).
17 An authentic sample of (ꢁ)-4 was purchased from Tokyo Chemical
Industry Co., Ltd. (TCI) and the enantiomeric purity of synthetic 4
was assessed by HPLC analysis. See the ESI†.
7014 | Chem. Commun., 2015, 51, 7012--7014
This journal is ©The Royal Society of Chemistry 2015