452
A. Ghorbani-Choghamarani et al. / Chinese Chemical Letters 25 (2014) 451–454
O
O
Cs CO
2
3
NH
NCO
+
Cl CO
OCCl
3
+
2
NH
3
2
EtO
N
H
Dioxane, r.t.
1.5 h
2a
1a
OEt
O
O
NH
NH
NH
NH
KOH (5 mol/L)
Reflux, 5 h
Dioxane
N
NH
r.t., overnight
O
O
4a
Scheme 1. Synthesis of 4-(4-isopropylphenyl)-1,2,4-triazolidine-3,5-dione.
HN NH
N
(400 MHz, DMSO-d6):
d 10.46 (s, 2H), 7.33–7.36 (m, 4H), 2.65 (q,
1) Triphosgene, Cs2CO3, dioxane, r.t., 1.5 h
2H, J = 7.2 Hz), 1.20 (t, 3H, J = 7.2 Hz); 13C NMR (100.6 MHz, DMSO-
R
NH2
O
O
2) Ethyl carbazate, dioxane, r.t., overnight
3) KOH (5 mol/L), reflux, 5 h
d6):
d 154.0, 143.9, 129.9, 128.6, 126.6, 28.3, 16.1. Anal. Calcd. for
C10H11N3O2: C, 58.53; H, 5.40; N, 20.48. Found: C, 58.34; H, 5.11; N,
20.21.
R
1
4
4-(2,4-Dimethoxyphenyl)-1,2,4-triazolidine-3,5-dione
White crystalline solid, 0.130 g (55%); mp: 245–246 8C; 1H NMR
(400 MHz, DMSO-d6): 10.20 (s, 2H), 7.16 (d, 1H, J = 8.4 Hz), 6.71
(s, 1H), 6.60 (d, 1H, J = 8.4 Hz), 3.82 (s, 3H), 3.76 (s, 3H); 13C NMR
(100.6 MHz, DMSO-d6): 161.6, 156.9, 154.8, 131.4, 113,2, 105.4,
(4e):
Scheme 2. Synthesis of 4-substituted-1,2,4-triazolidin-3,5-diones.
d
3. Results and discussion
d
99.7, 56.3, 56.0. Anal. Calcd. for C10H11N3O4: C, 50.63; H, 4.67; N,
17.71. Found: C, 49.28; H, 3.13; N, 17.78.
In light of the aforementioned biologic, laboratorial, and
industrial activities and as part of our ongoing program towards
the synthesis of heterocyclic compounds [10–15], we delineated
an efficient route for the synthesis of urazole derivatives.
4-(4-Tritylphenyl)-1,2,4-triazolidine-3,5-dione (4f): White
crystalline solid, 0.411 g (98%); mp: 300 8C (dec.); 1H NMR
(400 MHz, DMSO-d6):
d
10.58 (s, 2H), 7.02–7.41 (m, 19H); 13C
Initially, we performed the reaction between 4-isopropylaniline
1a and triphosgene in the presence of different bases (such as
triethylamine, potassium hydroxide, sodium carbonate, and
cesium carbonate) and solvents (such as dichloromethane,
acetone, 1,4-dioxane, ethyl acetate, and tetrahydro furane) to
achieve 4-isopropylisocyanate 2a. After consumption of 4-iso-
propylaniline, ethyl carbazate was added to the solution to afford
intermediate 3a. The best solvent and base for these two steps
were 1,4-dioxane and cesium carbonate, respectively. After
consumption of 4-isopropylisocyanate, the solvent was evaporated
and 5 mol/L KOH was added to the mixture and refluxed; this step
was found to be completed within 5 h, affording 4-(4-isopropyl-
phenyl)-1,2,4-triazolidine-3,5-dione 4a (Scheme 1).
NMR (100.6 MHz, DMSO-d6):
d
153.7, 146.7, 146.2, 131.2, 130.9,
130.1, 128.4, 126.6, 125.6, 64.8. Anal. Calcd. for C27H21N3O4: C,
77.31; H, 5.05; N, 10.02. Found: C, 76.89; H, 2.90; N, 9.52.
4-(4-Fluorophenyl)-1,2,4-triazolidine-3,5-dione (4h): White
crystalline solid, 0.150 g (77%); mp: 269–270 8C; 1H NMR
(400 MHz, DMSO-d6):
d
10.53 (s, 2H), 7.45-7.53 (m, 2H), 7.31–
161.4 (d, Jc–
7.36 (m, 2H); 13C NMR (100.6 MHz, DMSO-d6):
d
F = 243 Hz), 153.8, 128.7 (d, Jc–F = 9 Hz), 120.5 (d, Jc–F = 8 Hz), 116.1
(d, Jc–F = 23 Hz). Anal. Calcd. for C8H6FN3O4: C, 49.24; H, 3.10; N,
21.53. Found: C, 49.97; H, 2.56; N, 21.53.
The NMR spectra can be found in the Supporting information
file.
O
O
O
-
-Cl
Cs2CO3
-2HCl
Cl
Cl
+
R
Cl
NH2
Cl
R
N C O
Cl
Cl
NH2
R
Cl
O
2
O
O
Cl3CO
OCCl3
R
NH2
+
R
N
H
Cl3CO
OCCl3
OCCl3
NH2
R
1
O
O
O
-
-Cl
Cs2CO3
-2HCl
Cl
Cl
Cl + R NH2
Cl
NH2
R
R
N C O
Cl
Cl
Cl
O
2
R
R
N
H
OCCl3 +
Cs2CO3
R
N
C O
2
O
O
O
O
HN
HN
-EtOH
OEt
EtO
NHNH
N
R
H2N
HN
+ H2NHN
C O
OEt
N
N
R
O
RHN
O
3
4
O
Scheme 3. Mechanism of the urazole synthesis.