4704
A. Chattopadhyay et al. / Tetrahedron Letters 47 (2006) 4701–4705
(m, 8H), 2.26 (m, 1H), 3.02 (br s, 1H), 3.81 (dd, J = 10.0,
4.1 Hz, 1H), 3.88–4.0 (m, 5H), 5.0–5.2 (m, 2H), 5.8–6.0
(m, 1H), 7.41 (m, 6H), 7.68 (m, 4H). Anal. Calcd
for C29H40O4Si: C, 72.46; H, 8.39. Found, C, 72.29; H,
8.64.
strategy was established by exploiting 5c as a representa-
tive precursor to produce nucleoside 17. Employing a
similar strategy, the other stereochemical variations at
C-3 and C-4 in the sugar units could be introduced start-
ing from 5a,b,d.
25
11. Compound 5d: ½aꢁD ꢀ 4:68 (c 1.8, CHCl3); 1H NMR
(200 MHz, CDCl3): d 1.05 (s, 9H), 1.4 (m, 2H), 1.55–1.62
(m, 8H), 2.53 (m, 1H), 2.84 (br s, 1H), 3.84 (m, 2H), 3.9–
4.0 (m, 4H), 5.1–5.2 (m, 2H), 5.7–6.0 (m, 1H), 7.41 (m,
6H), 7.66 (m, 4H). Anal. Calcd for C29H40O4Si: C, 72.46;
H, 8.39. Found, C, 72.69; H, 8.61.
References and notes
1. (a) Huryn, D. M.; Okabe, M. Chem. Rev. 1992, 92, 1745–
1768, and references cited therein; (b) Duelhom, K. L.;
Pedersen, E. B. Synthesis 1992, 1–22, and references cited
therein; (c) Wilson, L. J.; Hager, M. W.; El-Kattan, Y. A.;
Liotta, D. C. Synthesis 1992, 1465–1479, and references
cited therein; (d) Yokoyama, M.; Momotake, A. Synthesis
1999, 1541–1554; (e) Yokoyama, M. Synthesis 2000, 1637–
1655; (f) Ludel, O. R.; Meier, C. Synthesis 2003, 2101–
2109.
2. (a) Shuto, S.; Kanazaki, M.; Ichikawa, S.; Minakawa, N.;
Matsuda, A. J. Org. Chem. 1998, 63, 746–754, and
references cited therein; (b) Harry-Okuru, R. E.; Smith,
J. M.; Wolfe, M. S. J. Org. Chem. 1997, 62, 1754–1789,
and references cited therein; (c) Ton-That, T. Nucleosides
Nucleotides 1999, 18, 731–732; (d) Takatori, S.; Kanda, H.
J. Med. Chem. 1999, 42, 2901–2908.
3. (a) Ichikawa, S.; Shuto, S.; Minakawa, N.; Matsuda, A. J.
Org. Chem. 1997, 62, 1368–1375; (b) Garg, N.; Plavec, J.;
Chattopadhyaya, J. Tetrahedron 1993, 49, 5189–5202; (c)
Ogawa, A.; Tanaka, M.; Sasaki, T.; Matsuda, A. J. Med.
Chem. 1998, 41, 5094–5107; (d) Vanheusden, V.; Munier-
Lehman, H.; Froeyen, M.; Dugue, L.; Heyerick, A.; De
Keukeleire, D.; Pochet, S.; Busson, R.; Herdewijn, P.; Van
Calenbergh, S. J. Med. Chem. 2003, 46, 3811–3821.
4. (a) Uhlmann, E.; Peyman, A. Chem. Rev. 1990, 90, 543–
584; (b) Mesmaekar, A. D.; Haner, R.; Martin, P.; Moser,
E. H. Acc. Chem. Res. 1995, 28, 366–374; (c) Kurreck, J.;
Wyszko, E.; Clemens, G.; Erdmann, V. A. Nucleic Acids
Res. 2002, 30, 1911–1918; (d) Stein, C. A. J. Clin. Invest.
2001, 108, 641–644; (e) Crooke, S. T. Methods Enzymol.
2000, 313, 3–45.
12. To a well stirred mixture of 1 (0.01 mol), 4 (0.012 mol) and
metal salt [CoCl2Æ6H2O (8.4 g, 0.035 mol) or CuCl2Æ2H2O
(6.0 g, 0.035 mol) or FeCl3 (4.9 g, 0.03 mol)] in THF
(70 mL) was added Zn dust ( 2.25 g, 0.035 mol for Co and
Cu; 1.95 g, 0.03 mol for Fe) in portions over a period of
15 min. The mixture was stirred at ambient temperature
for the period as shown in Table 1. The reaction mixture
was then treated successively with water (50 mL) and
EtOAc (100 mL), stirred for 10 min more and then
filtered. The filtrate was treated with 2% aqueous HCl to
dissolve a small amount of suspended particles. The
organic layer was separated. The aqueous layer was
extracted with EtOAc. The combined organic layer was
washed with water, brine and then dried. Solvent removal
and column chromatography of the residue (silica gel, 0–
15% EtOAc in petroleum ether) afforded 5a/5b as an
inseparable mixture, and 5c and 5d in pure form.
13. The partial (Co and Cu) to good (Fe) solubility of the
metal salts in distilled THF which always contains some
moisture, plays a role in facilitating bimetal redox reac-
tions and subsequent crotylation. It has been observed,
that in anhydrous THF no crotylation reaction took place
presumably due to the very poor solubility of these metal
salts.
14. (a) Dhotare, B.; Salaskar, A.; Chattopadhyay, A. Synthe-
sis 2003, 2571–2575; (b) Dhotare, B.; Chattopadhyay, A.
Tetrahedron Lett. 2005, 46, 3103–3105.
25
15. Compound 5a: ½aꢁD ꢀ 2:0 (c 0.9, CHCl3); 1H
NMR(200 MHz, CDCl3): d 1.04 (s, 9H), 1.4 (m, 2H),
1.55–1.62 (m, 8H), 2.25–2.5 (m, 1H), 2.84 (br s, 1H), 3.6–
3.7 (m, 1H), 3.75–4.0 (m, 4H), 4.1–4.2 (m, 1H), 5.0–5.2 (m,
2H), 5.7–6.0 (m, 1H), 7.40 (m, 6H), 7.65 (m, 4H). Anal.
Calcd for C29H40O4Si: C, 72.46; H, 8.39. Found, C, 72.24;
H, 8.11.
5. Heinemann, U.; Rudolph, L. N.; Alings, C.; Morr, M.;
Heikens, W.; Frank, R.; Blocker, H. Nucleic Acids Res.
1991, 19, 427–433.
6. (a) Svansson, L.; Kvarnstrom, I. J. Org. Chem. 1991, 56,
2993–2997, and references cited therein; (b) Hossain, N.;
Plavec, J.; Chattopadhyay, J. Tetrahedron 1994, 50, 4167–
4178; (c) Aguste, S. P.; Young, D. W. J. Chem. Soc.,
Perkin Trans. 1 1995, 395–404; (d) Herradon, B. Tetrahe-
dron: Asymmetry 1991, 2, 191–194; (e) Robins, M. J.;
Doboszewski, B.; Timoshchuk, V. A.; Peterson, M. A. J.
Org. Chem. 2000, 65, 2939–2945; (f) Nomura, M.; Sato,
T.; Washinosu, M.; Tanaka, M.; Shuto, S.; Matsuda, S.
Tetrahedron 2002, 58, 1279–1288.
7. (a) Vorbruggen, H. Acc. Chem. Res. 1995, 28, 509–520; (b)
Martin, P. Helv. Chim. Acta 1996, 79, 1930; (c) Saneyoshi,
M.; Satoh, E. Chem. Pharm. Bull. 1979, 27, 2518–2521; (d)
Mukaiyama, T.; Ishikawa, T.; Uchino, H. Chem. Lett.
1997, 389; (e) Vorbruggen, H.; Krolikiewicz, K.; Bennua,
B. Chem. Ber. 1981, 114, 1234–1255.
25
16. Compound 5b: ½aꢁD ꢀ7.2 (c 1.0, CHCl3); 1H
NMR(200 MHz, CDCl3): d 1.03 (s, 9H), 1.4 (m, 2H),
1.56–1.62 (m, 8H), 1.90 (br s, 1H), 2.2–2.4 (m, 1H), 3.5–4.0
(m, 5H), 4.1–4.2 (m, 1H), 5.0–5.2 (m, 2H), 5.8–6.0 (m,
1H), 7.39 (m, 6H), 7.64 (m, 4H). Anal. Calcd for
C29H40O4Si: C, 72.46; H, 8.39. Found, C, 72.68; H, 8.30.
17. Marshall, J. A.; Garofalo, A. W. J. Org. Chem. 1993, 58,
3675–3680.
18. 1H NMR data of 11 (200 MHz, CDCl3): d 0.97 (s, 9H), 1.1
(s, 9H), 3.4–3.5 (m, 1H, H-2), 3.9–4.2 (m, 4H, H-5 and
CH2OTBDPS at H-2), 4.63 (m, 1H, H-4), 5.96 (dd,
J = 13.7 and 2.4 Hz, 1H, H-3), 7.1–7.9 (m, 25H). For
C45H50O6Si2: C, 72.74; H, 6.78. Found, C, 72.96; H, 7.01.
19. (a) Cherest, M.; Felkin, H. Tetrahedron Lett. 1968, 2205;
(b) Anh, N. T. Top. Curr. Chem. 1980, 88, 145–170.
20. Lane, C. F. J. Org. Chem. 1974, 39, 1437–1438.
21. Corey, E. J.; Suggs, J. W. Tetrahedron Lett. 1975, 2647–
2650.
8. (a) Chattopadhyay, A.; Mamdapur, V. R. J. Org. Chem.
1995, 59, 585–587; (b) Chattopadhyay, A.; Dhotare, B.
Tetrahedron: Asymmetry 1998, 9, 2715–2723.
25
22. Compound 16: ½aꢁD 2.3 (c 1.4, CHCl3; 1H NMR
9. (a) Petrier, C.; Luche, J. L. J. Org. Chem. 1985, 50, 910–
912; (b) Einhorn, C.; Luche, J. L. J. Organomet. Chem.
1987, 322, 177; (c) Petrier, C.; Einhorn, J.; Luche, J. L.
Tetrahedron Lett. 1985, 26, 1449–1452.
(200 MHz, CDCl3): 1.05 (s, 9H), 1.4–1.6 (m, 10H), 1.96
and 2.04 (2s, 3H), 2.1–2.3 (m, 2H, H-2), 2.6 (m, 1H, H-3),
3.6–3.8 (m, 2H), 3.9–4.1 (m, 4H), 6.24 (m, 1H, H-1), 7.40
(m, 6H), 7.65 (m, 4H). Anal. Calcd for C31H42O6Si: C,
69.11; H, 7.86. Found, C, 69.29; H, 8.04.
25
10. Compound 5c: ½aꢁD 20.75 (c 1.6, CHCl3); 1H NMR
(200 MHz, CDCl3): d 1.07 (s, 9H), 1.4 (m, 2H), 1.56–1.62