A R T I C L E S
Ackermann et al.
Figure 2. Starting materials, intermediates, and reaction products observed by 31P NMR spectroscopy during Wittig reactions (a, triphenyl; b-d, series of
2-furyl bearing compounds; e-g, series of 3-furyl systems).
Table 1. 31P NMR Chemical Shift of Intermediates Detected during Wittig Reactions
δ
31P [ppm]
δ
31P [ppm]
δ
31P [ppm]
ylideb
3
δ
31P [ppm]
δ
31P [ppm]
substituents
phosphanea
phosphonium salta
oxaphosphetaneb,c
phosphane oxideb
at phosphorus
1
2
4
5
Ph3 a
-6.0
-26.3
-50.3
-76.8
-31.5
-58.0
-82.3
26.9
16.3
4.4
-9.6
17.2
7.7
14.8
2.6
-60.7d
24.7
16.4
2.3
-12.9
20.8
12.7
4.1
(2-furyl)Ph2 b
(2-furyl)2Ph c
(2-furyl)3 d
(3-furyl)Ph2 e
(3-furyl)2Ph f
(3-furyl)3 g
-73.7 (-73.8)
-87.0 (-88.9)
-101.4 (-102.0)
-75.7 (-75.8)
-91.1 (-91.2)
-103.2 (-103.6)
-12.1
-30.9
-2.6
-15.7
-31.2
-1.8
a
b
c
31P NMR chemical shift in CDCl3. 31P NMR chemical shift in [d8]THF. 31P NMR chemical shift for the cis-oxaphosphetane. In parentheses the 31
P
NMR chemical shift of the trans-isomer. d Isomers not resolved.
were the same as those with 2-furyl groups. The 31P MAS NMR
spectra were recorded on a 600 MHz NMR spectrometer (243
MHz for 31P) at room temperature with spinning frequencies
of 4000, 3200, 2300, 1400, and 700 Hz. The measurement time
varied between 30 min and 5 h, depending on the spinning
frequency and the number of spinning sidebands which had to
be resolved. As an example, the recorded 31P MAS NMR spectra
of ethyltris(2-furyl)phosphonium iodide 2d at spinning frequen-
cies of 4000 and 700 Hz are shown in Figure 3.
Table 2. IR Stretching Frequencies of Nickelcarbonylphosphane
Complexes of the General Formula P(2- or 3-furyl)nPh3-nNi(CO)3
1
number n of 2-furyl substituents
CO stretching frequency [cm-
]
n ) 0 (prepared from 1a)
n ) 1 (prepared from 1b)
n ) 2 (prepared from 1c)
n ) 3 (prepared from 1d)
2068.9
2071.9
2075.4
2078.4
1
number n of 3-furyl substituents
CO stretching frequency [cm-
]
n ) 1 (prepared from 1e)
n ) 2 (prepared from 1f)
n ) 3 (prepared from 1g)
2069.8
2070.5
2071.5
(17) (a) Dusold, S.; Maisel, H.; Sebald, A. J. Magn. Reson. 1999, 141, 78. (b)
Ashbrook, S. E.; Wimperis, S. High-resolution NMR of quadrupolar nuclei
in solids: The satellite-transition magic angle spinning (STMAS) experi-
ment. Prog. Nucl. Magn. Reson. Spectrosc. 2004, 45, 53. (c) Kohler, S. J.;
Ellett, D. J., Jr.; Klein, M. P. J. Chem. Phys. 1976, 64, 4451. (d) Kohler,
S. J.; Klein, M. P. Biochemistry 1976, 15, 967. (e) Kohler, S. J.; Klein, M.
P. J. Am. Chem. Soc. 1977, 99, 8290. (f) Herzfeld, G.; Griffin, R. G.;
Haberkorn, R. A. Biochemistry 1978, 17, 2711. (g) Tutunjian, P. N.; Waugh,
J. S. J. Chem. Phys. 1982, 76, 1223. (h) Tutunjian, P. N.; Tropp, J.; Waugh,
J. S. J. Am. Chem. Soc. 1983, 105, 4848. (i) Naito, A.; Sastry, D. L.;
McDowell, C. A. Chem. Phys. Lett. 1985, 115, 19. (j) Hauser, H.; Radloff,
C.; Ernst, R. R.; Sundell, S.; Pascher, I. J. Am. Chem. Soc. 1988, 110,
1054. (k) McDowell, C. A.; Naito, A.; Sastry, D. L.; Takegoshi, K. J. Magn.
Reson. 1988, 78, 498. (l) Ermark, F.; Topic, B.; Haeberlen, U.; Blinc, R.
J. Phys.: Condens. Matter 1989, 1, 5489. (m) Eichele, K.; Wasylishen, R.
E. J. Phys. Chem. 1994, 98, 3108. (n) Eichele K.; Wu, G.; Wasylishen, R.
E.; Britten, J. F. J. Phys. Chem. 1995, 99, 1030. (o) Lumsden, M. D.;
Wasylishen, R. E.; Britten, J. F. J. Phys. Chem. 1995, 99, 16602. (p) Eichele
K.; Wasylishen, R. E.; Maitra, K.; Nelson, J. H.; Britten, J. F. Inorg. Chem.
1997, 36, 3539. (q) Jensen, T. R.; Hazell, R. G.; Vosegaard, T.; Jakobsen,
H. J. Inorg. Chem. 2000, 39, 2026. (r) Gee, M.; Wasylishen, R. E.; Eichele,
K. J. Phys. Chem. A 2000, 104, 4598. (s) Grossmann, G.; Scheller, D.;
Malkina, O. L.; Malkin, V. G.; Zahn, G.; Schmidt, H.; Haeberlen, U. Solid
State Nucl. Magn. Reson. 2000, 17, 22.
(18) (a) Dusold, S.; Klaus, E.; Sebald, A.; Bak, M.; Nielsen, N. C. J. Am. Chem.
Soc. 1997, 119, 7121. (b) Dusold, S.; Milius, W.; Sebald, A. J. Magn.
Reson. 1998, 135, 500. (c) Dusold, S.; Maisel, H.; Sebald, A. J. Magn.
Reson. 1999, 141, 78. (d) Bechmann, M.; Dusold, S.; Forster, H.; Haeberlen,
U.; Lis, T.; Sebald, A.; Stumber, M. Mol. Phys. 2000, 98, 605. (e) Eichele,
K.; Wasylishen, R. E.; Corrigan, J. F.; Taylor, N. J.; Carty, A. J.; Feindel,
K. W.; Benard, G. M. J. Am. Chem. Soc. 2002, 124, 1541. (f) Power, W.
P.; Wasylishen, R. E. Inorg. Chem. 1992, 31, 2176. (g) Eichele, K.;
Ossenkamp, G. C.; Wasylishen, R. E.; Cameron, T. S. Inorg. Chem. 1999,
38, 639. (h) Bernard, G. M.; Wu, G.; Lumsden, M. D.; Wasylishen, R. E.;
Maigrot, N.; Charrier, C.; Mathey, F. J. Phys. Chem. A 1999, 103, 1029.
(i) Bechmann, M.; Dusold, S.; Geipel, F.; Sebald, A.; Sellmann, D. J. Phys.
Chem. A 2005, 109 (24), 5275.
solve this apparent contradiction we initiated solid phase MAS
NMR studies to have a closer look of the 31P NMR chemical
shift tensors.
Solid Phase 31P NMR Investigations
Generally, the shielding of a NMR active nucleus from the
outer magnetic field B0 is generated by electron density around
that nucleus. The question arose how electron withdrawing
substituents, which decrease the electron density around the
phosphorus nucleus, also increase the shielding. To understand
the direction in which the 31P NMR chemical shift is moved by
different substituents, information on the spatial components
of the 31P NMR chemical shift is necessary. Either 31P NMR
investigations on oriented single crystals17 or 31P MAS NMR
on polycrystalline powders18 are suitable to obtain such data.
We performed MAS NMR studies on the polycrystalline
phosphonium salts 2a, 2b, 2c, and 2d. Phosphonium salts were
chosen for these investigations, since the phosphorus atom lacks
the free electron pair. Free electron pairs on phosphorus are
known to have multiple influences on the chemical shift, which
are difficult to predict and to quantify. 3-Furyl bearing phos-
phonium salts were not implemented in the 31P MAS NMR19
investigation, since the overall effects on the chemical shifts
(19) (a) Andrew, E. R.; Bradbury, A.; Eades, R. G. Nature 1958, 182, 1659.
(b) Lowe, I. J. Phys. ReV. Lett. 1959, 2, 285.
9
8436 J. AM. CHEM. SOC. VOL. 128, NO. 26, 2006