Journal of the American Chemical Society
Page 4 of 4
(10) For the α,β-dehydrogenation of more acidic and more easily
oxidized lactams, see: Bhattacharya, A.; DiMichele L. M.; Dolling,
U. H.; Douglas, A. W.; Grabowski, E. J. J. J. Am. Chem. Soc. 1988,
110, 3318.
(11) For the use of elemental halogens for α,β-dehydrogenation
of lactams, see: King, A. O.; Anderson, R. K.; Shuman, R. F.;
Karady, S.; Abramson, N. L.; Douglas, A. W. J. Org. Chem. 1993, 58,
3384.
(12) For a rare α,β-dehydrogenation of a lactam in the presence
of an unprotected alcohol, see: Shams, N. A. J. Prakt.
Chem. 1985, 327, 536.
(13) In addition to the slightly improved yield with 3e relative to
3g, the aniline precursor of 3e is a crystalline solid (M.P. = 67 – 68
°C) whereas that of 3g is an oil.
(14) Dehydrogenation under the standard conditions was also
viable for esters (tert-butyl hydrocinnamate, 90% yield) and ni-
triles (cyclohexanecarbonitrile, 95% yield).
(15) Martín, R.; Romea, P.; Tey, C.; Urpí, F.; Vilarrasa, J. Synlett
1997, 12, 1414.
(16) For NMR yields for α,β-dehydrogenation of the more acidic
and more easily oxidized imides, see: Matsuo, J.-i.; Aizawa, Y. Tet-
rahedron Lett. 2005, 46, 407.
(17) For asymmetric conjugate additions with similar products,
see: (a) Nicolás, E.; Russell, K. C.; Hruby, V. J. J. Org. Chem. 1993,
58, 766. (b) Williams, D. R.; Nold, A. L.; Mullins, R. J. J. Org. Chem.
2004, 69, 5374.
(18) For an example of dehydrogenation to form a pyridone, see:
Tanaka, T.; Mashimo, K.; Wagatsuma, M. Tetrahedron Lett. 1971, 12,
2803.
(19) Dehydrogenation to form N,N-dibenzyl-β-methylcinnamide
provided a yield of 95% (E:Z = 4:1).
(20) For reviews on Pd-catalyzed alcohol oxidation, see: (a) Mu-
zart, J. Tetrahedron 2003, 59, 5789. (b) Sigman, M. S.; Schultz, M. J.
Org. Biomol. Chem. 2004, 2, 2551. (c) Ebner, D. C.; Bagdanoff, J. T.;
Ferreira, E. M.; McFadden, R. M.; Caspi, D. D.; Trend, R. M.; Stoltz,
B. M. Chem. Eur. J. 2009, 15, 12978.
(21) In addition to the mild nature of the allyl oxidant, the lig-
and environment of the palladium-bound substrate allows for
selective amide dehydrogenation, rather than alcohol oxidation or
allylation. For a related reaction involving the oxidation of allyl
carbonates to ketones, see: Minami, I.; Tsuji, J. Tetrahedron, 1987,
43, 3903.
(22) For a review on amine oxidation, including with Pd, see:
Murahashi, S.-I. Angew. Chem. Int. Ed. 1995, 34, 2443.
(23) For two recent examples of this strategy, see: (a) Lee, M.;
Sanford, M. S. J. Am. Chem. Soc. 2015, 137, 12796. (b) Howell, J. M.;
Feng, K.; Clark, J. R.; Trzepkowski, L. J.; White, M. C. J. Am. Chem.
Soc. 2015, 137, 14590.
(24) For lactam α,β-dehydrogenation in the presence of amides,
see: Rasmusson, G. H.; Reynolds, G. F.; Steinberg, N. G.; Walton,
E.; Patel, G. F.; Liang, T.; Cascieri, M. A.; Cheung, A. H.; Brooks, J.
R.; Berman, C. J. Med. Chem. 1986, 29, 2298.
1
2
3
4
5
6
7
8
AUTHOR INFORMATION
Corresponding Author
Notes
The authors declare no competing financial interests.
9
ACKNOWLEDGMENTS
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
We gratefully acknowledge Yale University, the NSF (GRF
to A.T., DGE-1122492) and the Anderson Foundation (post-
doctoral fellowship to Y.C.) for funding.
REFERENCES
(1) Dobereiner, G. E.; Crabtree, R. H. Chem. Rev. 2010, 110, 681.
(2) For reviews on α,β-dehydrogenation, see: (a) Walker, D.;
Hiebert, J. D. Chem. Rev. 1967, 67, 153. (b) Reich, H. J.; Wollowitz,
S. Org. React. 1993, 44, 1. (c) Muzart, J. Eur. J. Org. Chem. 2010,
3779. (d) Stahl, S. S.; Diao, T. Comp. Org. Synth. 2014, 7, 178. (e)
Turlik, A.; Chen, Y.; Newhouse, T. R. Synlett DOI: 10.1055/s-0035-
1561282.
(3) For practical methods for ketone and aldehyde α,β-
dehydrogenation, see: (a) Reich, H. J.; Reich, I. L.; Renga, J. M. J. Am.
Chem. Soc. 1973, 95, 5813. (b) Sharpless, K. B.; Lauer, R. F.; Teranishi,
A. Y. J. Am. Chem. Soc. 1973, 95, 6137. (c) Trost, B. M.; Salzmann, T.
N.; Hiroi, K. J. Am. Chem. Soc. 1976, 98, 4887. (d) Ito, Y.; Hirao, T.;
Saegusa, T. J. Org. Chem. 1978, 43, 1011. (e) Nicolaou, K. C.; Zhong, Y. L.;
Baran, P. S. J. Am. Chem. Soc. 2000, 122, 7596. (f) Diao, T.; Stahl, S. S.
J. Am. Chem. Soc. 2011, 133, 14566. (g) Diao, T.; Pun, D.; Stahl, S. S.
J. Am. Chem. Soc. 2013, 135, 8205.
(4) For ester and nitrile α,β-dehydrogenation, see: Chen, Y.;
Romaire, J. P.; Newhouse, T. R. J. Am. Chem. Soc. 2015, 137, 5875.
(5) Wieland, T.; Bodanszky, M. The World of Peptides: A Brief
History of Peptide Chemistry; Springer: 1991.
(6) A recent analysis indicated that ~60% of all manuscripts
published in J. Med. Chem. in 2014 included amides. (a) Brown, D.
G.; Boström, J. J. Med. Chem. DOI: 10.1021/acs.jmedchem.5b01409.
Published online Nov. 16, 2015. In addition, approximately 25% of
pharmaceutical compounds contain amides. (b) A. K. Ghose, V. N.
Viswanadhan, J. J. Wendoloski, J. Comb. Chem. 1999, 1, 55–68.
(7) Marchildon, K. Macromol. React. Eng., 2011, 5, 22.
(8) For a single example of amide α,β-dehydrogenation using an
oxazoline directing group, see: Giri, R.; Maugel, N.; Foxman, B. M.;
Yu, J.-Q. Organometallics 2008, 27, 1667.
(9) For a recent Pd-catalyzed dehydrogenation to form ben-
zamides, see: Iosub, A. V.; Stahl, S. S. J. Am. Chem. Soc. 2015, 137,
3454.
Table of Contents
ACS Paragon Plus Environment