RESEARCH
| REPORTS
optimization to ensure safe dissipation of the
heat associated with the exothermic reaction
profile; potentially explosive intermediates and
toxic byproducts are also concerns. Only recently
has the Buchwald-Hartwig amination of aromatic
halides been accomplished with ammonia as the
nitrogen source (37). A C-H amination protocol of
benzene with ammonia, developed by DuPont,
uses a NiO-ZrO2 catalyst system at 350°C and 300
to 400 atm, producing aniline in a 14% maximum
yield (38, 39).
15. K. Foo, E. Sella, I. Thomé, M. D. Eastgate, P. S. Baran,
J. Am. Chem. Soc. 136, 5279–5282 (2014).
16. T. Kawakami, K. Murakami, K. Itami, J. Am. Chem. Soc. 137,
2460–2463 (2015).
17. C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 113,
5322–5363 (2013).
18. J. M. R. Narayanam, C. R. J. Stephenson, Chem. Soc. Rev. 40,
102–113 (2011).
19. D. A. Nicewicz, T. M. Nguyen, ACS Catal. 4, 355–360 (2014).
20. Q. Qin, S. Yu, Org. Lett. 16, 3504–3507 (2014).
21. E. Brachet, T. Ghosh, I. Ghosh, B. König, Chem. Sci. 6,
987–992 (2015).
22. G. Pandey, M. Sridhar, U. T. Bhalerao, Tetrahedron Lett. 31,
5373–5376 (1990).
23. T. Morofuji, A. Shimizu, J. Yoshida, J. Am. Chem. Soc. 135,
5000–5003 (2013).
24. T. Morofuji, A. Shimizu, J. Yoshida, J. Am. Chem. Soc. 136,
4496–4499 (2014).
25. T. Morofuji, A. Shimizu, J. Yoshida, Chem. Eur. J. 21, 3211–3214
(2015).
26. K. Ohkubo, K. Mizushima, R. Iwata, S. Fukuzumi, Chem. Sci. 2,
715–722 (2011).
27. K. Ohkubo, A. Fujimoto, S. Fukuzumi, J. Phys. Chem. A 117,
10719–10725 (2013).
28. T. M. Nguyen, N. Manohar, D. A. Nicewicz, Angew. Chem. Int. Ed.
53, 6198–6201 (2014).
29. W. P. Hess, F. P. Tully, J. Phys. Chem. 93, 1944–1947 (1989).
30. X.-M. Pan, M. N. Schuchmann, C. von Sonntag, J. Chem. Soc.
Perkin Trans. 2 1993, 289–297 (1993).
33. K. Ohkubo et al., Chem. Commun. (Cambridge) 46, 601–603
(2010).
34. F. G. Bordwell, J. P. Cheng, J. Am. Chem. Soc. 111, 1792–1795
(1989).
35. E. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem. 57,
10257–10274 (2014).
36. T. J. Ritchie, S. J. F. Macdonald, S. Peace, S. D. Pickett,
C. N. Luscombe, Med. Chem. Comm. 3, 1062–1069
(2012).
37. G. D. Vo, J. F. Hartwig, J. Am. Chem. Soc. 131, 11049–11061
(2009).
38. T. W. Del Pesco, U.S. Patent 4031106 (1977).
39. T. W. Del Pesco, U.S. Patent 4001260 (1977).
After screening a variety of commercially available
ACKNOWLEDGMENTS
–
ammonium salts such as H4N+OAc–, H4N+HCO3 ,
Financial support was provided by the David and Lucile Packard
Foundation, Merck, and an Amgen Young Investigator Award.
N.A.R is grateful for an NSF Graduate Fellowship, and K.A.M. was
supported by a Francis Preston Venable Graduate Fellowship.
A provisional patent has been filed on the methods presented here
(U.S. patent application no. 62/170,632).
and (H4N+)2CO32–, we found that ammonium
carbamate (H4N+H2NCO2–) was best suited for
this role (table S3 and supplementary materials).
This benchtop-stable solid salt is less costly on a
molar basis than liquid ammonia. Using 4.0
equivalents of ammonium carbamate with anis-
ole, under catalytic conditions nearly identical to
those applied to azoles, resulted in the formation
of a 1.6:1 mixture of para- and ortho-anisidine in
59% isolated yield (42; Fig. 4).
SUPPLEMENTARY MATERIALS
Materials and Methods
Tables S1 to S4
References (40–73)
NMR Spectra
The scope of the aniline-forming reaction was
similar to the azole-coupling transformations. Pro-
tected phenols (43 to 45), haloarenes (47), and ni-
trogen heteroaromatics such as N-methylindazole
(48) and 6-methoxyquinoline (49) were aminated
under this protocol, albeit with modest regio-
selectivities in the case of the monosubstituted
aromatics.
31. J. E. Baur, S. Wang, M. C. Brandt, Anal. Chem. 68, 3815–3821 (1996).
32. M. Schmittel, A. Burghart, Angew. Chem. Int. Ed. Engl. 36,
2550–2589 (1997).
9 July 2015; accepted 19 August 2015
10.1126/science.aac9895
MINERAL SURFACES
Overall, these C-N bond–forming reactions are
powerful tools for the synthesis of complex aro-
matics using an organic photooxidant and nitroxyl
radical catalyst system. From the substrate scope
investigation, it is clear that free alcohols, esters,
silyl ethers, halides, amides, alkenes, and pro-
tected amines are all compatible functionalities.
The mildness of this protocol makes it appealing
for a variety of applications. Moreover, we antic-
ipate that this general method for the activation
of arenes will result in the development of ad-
ditional transformations.
X-ray–driven reaction front dynamics
at calcite-water interfaces
Nouamane Laanait,1,2*† Erika B. R. Callagon,2,3 Zhan Zhang,4 Neil C. Sturchio,5
Sang Soo Lee,1 Paul Fenter1*
The interface between minerals and aqueous solutions hosts globally important biogeochemical
processes such as the growth and dissolution of carbonate minerals. Understanding such
processes requires spatially and temporally resolved observations and experimental controls
that precisely manipulate the interfacial thermodynamic state. Using the intense radiation fields
of a focused synchrotron x-ray beam, we drove dissolution at the calcite/water interface and
simultaneously probed the dynamics of the propagating reaction fronts using surface x-ray
microscopy. Evolving surface structures were controlled by the time-dependent solution
composition, as characterized by a kinetic reaction model. At extreme disequilibria, we observed
the onset of reaction front instabilities with velocities of > 30 nanometers per second.
These instabilities serve as a signature of transport-limited dissolution of calcite under extreme
disequilibrium.
REFERENCES AND NOTES
1. T. W. Lyons, M. S. Sanford, Chem. Rev. 110, 1147–1169
(2010).
2. G. B. Shul’Pin, in Transition Metals for Organic Synthesis:
Building Blocks and Fine Chemicals, M. Beller, C. Bolm, Eds.
(Wiley-VCH, New York, ed. 2, 2004), pp. 215–241.
3. J. P. Wolfe, S. Wagaw, J.-F. Marcoux, S. L. Buchwald,
Acc. Chem. Res. 31, 805–818 (1998).
4. J. F. Hartwig, Acc. Chem. Res. 31, 852–860 (1998).
5. P. Y. S. Lam, G. Vincent, C. G. Clark, S. Deudon, P. K. Jadhav,
Tetrahedron Lett. 42, 3415–3418 (2001).
6. K. Sanjeeva Rao, T.-S. Wu, Tetrahedron 68, 7735–7754 (2012).
7. W. C. P. Tsang, R. H. Munday, G. Brasche, N. Zheng,
S. L. Buchwald, J. Org. Chem. 73, 7603–7610 (2008).
8. L. D. Tran, J. Roane, O. Daugulis, Angew. Chem. Int. Ed. 52,
6043–6046 (2013).
9. H. Xu, X. Qiao, S. Yang, Z. Shen, J. Org. Chem. 79, 4414–4422
(2014).
10. T. Matsubara, S. Asako, L. Ilies, E. Nakamura, J. Am. Chem. Soc.
136, 646–649 (2014).
11. L. J. Allen, P. J. Cabrera, M. Lee, M. S. Sanford, J. Am. Chem. Soc.
136, 5607–5610 (2014).
12. H. J. Kim, J. Kim, S. H. Cho, S. Chang, J. Am. Chem. Soc. 133,
16382–16385 (2011).
13. A. A. Kantak, S. Potavathri, R. A. Barham, K. M. Romano,
B. DeBoef, J. Am. Chem. Soc. 133, 19960–19965 (2011).
14. G. B. Boursalian, M.-Y. Ngai, K. N. Hojczyk, T. Ritter, J. Am.
Chem. Soc. 135, 13278–13281 (2013).
alcium carbonate precipitates abiotically
and is synthesized by living organisms
into complex and functional biomineral
architectures (1). Combined, calcium carbon-
ate minerals constitute a major fraction of
Earth’s upper crust in the form of carbonate rocks
(2). Characterizing the rapidly evolving morphol-
ogy of calcium carbonate during growth (3, 4) and
dissolution (5, 6) is central to both a fundamental
understanding of its reactivity and manipulation of
its versatile functionality. The morphology of cal-
cium carbonate phases can be imaged in situ with
electron (7, 8) and x-ray microscopies; however, the
large radiation doses deposited by these probes can
substantially alter the state of the system (9).
We used a focused x-ray beam to both observe
and drive dissolution in a quantifiable manner
(10). The synchrotron x-ray beam induces acidi-
fication and depletion of carbonate ions within
the solution, which controlled the interfacial
C
1Chemical Sciences and Engineering Division, Argonne
National Laboratory, Argonne, IL, USA. 2Center for
Nanophase Materials Sciences, Oak Ridge National
Laboratory, Oak Ridge, TN, USA. 3Department of Earth and
Environmental Sciences, University of Illinois at Chicago,
Chicago, IL, USA. 4X-ray Science Division, Argonne National
Laboratory, Argonne, IL, USA. 5Department of Geological
Sciences, University of Delaware, Newark, DE, USA.
Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
1330 18 SEPTEMBER 2015 • VOL 349 ISSUE 6254
sciencemag.org SCIENCE