1184
D. Ma, W. Zhu
LETTER
0.88 (d, J = 8.7 Hz, 3 H), 0.77 (d, J = 6.9 Hz, 3 H). 13C NMR
(75 MHz, CDCl3): d = 172.6, 166.7, 162.4, 161.2, 95.5, 73.2,
60.1, 58.1, 44.9, 40.7, 38.0, 24.8, 23.4, 20.0, 17.3, 15.8, 14.8,
14.4. MS: m/z = 323 [M+]. ESI-HRMS: m/z calcd for
C18H29NO4Na: 346.1979 [M + Na]+; found: 346.1989.
(7) Selected data for 3h: [a]D14 +53.6 (c 0.95, CHCl3). IR (film):
2934, 1730, 1675, 1552 cm–1. 1H NMR (300 MHz, CDCl3):
d = 7.31–7.21 (m, 8 H), 7.12–7.10 (m, 2 H), 4.74 (d, J = 12.6
Hz, 1 H), 4.56 (d, J = 12.6 Hz, 1 H), 4.18–4.09 (m, 4 H),
3.74–3.73 (m, 1 H), 3.48 (d, J = 9.6 Hz, 1 H), 3.41–3.36 (m,
1 H), 3.28 (dt, J = 17.0, 5.0 Hz, 1 H), 3.07–2.99 (m, 1 H),
2.83–2.74 (m, 3 H), 2.61 (dd, J = 13.2, 4.7 Hz, 1 H), 2.52 (dt,
J = 11.9, 5.0 Hz, 1 H), 2.38 (dd, J = 16.4, 11.0 Hz, 1 H),
1.69–1.64 (m, 1 H), 1.56–1.47 (m, 3 H), 1.29–1.19 (m, 6 H).
13C NMR (75 MHz, CDCl3): d = 173.0, 169.2, 154.7, 139.0,
138.9, 129.0 (2 C), 128.5 (2 C), 128.3 (2 C), 127.4 (2 C),
127.3, 126.5, 93.0, 75.9, 70.1, 66.2, 60.2, 58.8, 52.6, 38.1,
36.9, 33.8, 27.8, 23.3, 20.5, 14.6, 14.3. MS (EI): m/z = 491
[M+]. ESI-HRMS: m/z calcd for C30H37NO5Na: 514.2586 [M
+ Na]+; found: 514.2564.
Notably, there was marked difference in yield between
formation of 3a and 3e (compare entries 1 and 5), or 3d
and 3f (compare entries 4 and 6). These results indicated
that the second intramolecular Michael addition should be
more difficult after formation of a five-membered ring
than that of a six-membered ring. However, it seemed that
a five-membered ring was easier to generate than a six-
membered ring for the intramolecular Michael addition
step because when 1b reacted with 2g, an amine bearing
two a,b-unsaturated ester units, only indolizidine 3m5,8
was isolated (entry 12).
In conclusion, we have developed a novel cascade reac-
tion process between w-iodo-a,b-alkynoates and d- or g-
amino a,b-unsaturated esters, which allowed the assem-
bly of polysubstituted indolizidines, quinolizidines, and
pyrrolizidines with a great diversity in a very efficient
manner.9 This method may find further application in the
total synthesis of natural products and designed molecules
for biological evaluation.
(8) Selected data for 3m: [a]D18 –12.3 (c 0.5, CHCl3). IR (film):
2930, 1728, 1665, 1574 cm–1. 1H NMR (300 MHz, CDCl3):
d = 6.88 (q, J = 7.5 Hz, 1 H), 5.90 (d, J = 15.5 Hz, 1 H),
4.22–4.03 (m, 6 H), 3.47 (q, J = 3.9 Hz, 1 H), 3.22–3.16 (m,
1 H), 3.09–2.96 (m, 2 H), 2.86–2.74 (m, 3 H), 2.52–2.47 (m,
2 H), 2.29 (dd, J = 15.6, 9.9 Hz, 1 H), 1.79–1.74 (m, 2 H),
1.65–1.59 (m, 2 H), 1.31–1.19 (m, 9 H). MS (EI): m/z = 393
[M+]. ESI-HRMS: m/z calcd for C21H32NO6: 394.2252 [M +
H]+; found: 394.2224.
Acknowledgment
The authors are grateful to the Chinese Academy of Sciences,
National Natural Science Foundation of China (grant 20132030),
and Science and Technology Commission of Shanghai Munici-
pality (grant 02JC14032) for their financial support.
(9) For some recent references for elaborating these molecules,
see: (a) Epperson, M. T.; Gin, D. Y. Angew. Chem. Int. Ed.
2002, 41, 1778. (b) Toyooka, N.; Fukutome, A.; Nemoto,
H.; Daly, J. W.; Spande, T. F.; Garraffo, H. M.; Kaneko, T.
Org. Lett. 2002, 4, 1715. (c) Barluenga, J.; Mateos, C.;
Aznar, F.; Valdés, C. Org. Lett. 2002, 4, 1971. (d) Lindsay,
K. B.; Pyne, S. G. J. Org. Chem. 2002, 67, 7774. (e) Amos,
D. T.; Renslo, A. R.; Danheiser, R. L. J. Am. Chem. Soc.
2003, 125, 4970. (f) Molander, G. A.; Pack, S. K. J. Org.
Chem. 2003, 68, 9214. (g) Randl, S.; Blechert, S. J. Org.
Chem. 2003, 68, 8879. (h) Gracias, V.; Zeng, Y.; Desai, P.;
Aubé, J. Org. Lett. 2003, 5, 4999. (i) Huang, H.; Spande, T.
F.; Panek, J. S. J. Am. Chem. Soc. 2003, 125, 626. (j) Back,
T. G.; Parvez, M.; Zhai, H. J. Org. Chem. 2003, 68, 9389.
(k) Alcaide, B.; Almendros, P.; Alonso, J. M.; Aly, M. F.
Chem. Eur. J. 2003, 9, 3415. (l) Davis, F. A.; Yang, B. Org.
Lett. 2003, 5, 5011. (m) Pu, X.; Ma, D. J. Org. Chem. 2003,
68, 4400. (n) Cassidy, M. P.; Padwa, A. Org. Lett. 2004, 6,
4029. (o) Poupon, E.; Francois, D.; Kunesch, N.; Husson, H.
P. J. Org. Chem. 2004, 69, 3836. (p) Zech, G.; Kunz, H.
Chem. Eur. J. 2004, 10, 4136. (q) Kuethe, J. T.; Comins, D.
L. J. Org. Chem. 2004, 69, 5219. (r) Singh, O. V.; Han, H.
Org. Lett. 2004, 6, 3067. (s) Smith, A. B.; Kim, D. S. Org.
Lett. 2004, 6, 1493. (t) Yu, S.; Zhu, W.; Ma, D. J. Org.
Chem. 2005, 70, 7364.
References and Notes
(1) Ma, D.; Zhu, W. Org. Lett. 2001, 3, 3927.
(2) Zhu, W.; Dong, D.; Pu, X.; Ma, D. Org. Lett. 2005, 7, 705.
(3) Zhu, W.; Cai, G.; Ma, D. Org. Lett. 2005, 7, 5545.
(4) Jurczak, J.; Golebiowski, A. Chem. Rev. 1989, 89, 149; and
references cited therein.
(5) General Procedure for Reaction of Iodides 1 with d- or g-
Amino a,b-Unsaturated Esters 2:
A mixture of 1 (0.22 mmol), 2 (0.23 mmol), anhyd K2CO3
(95 mg), and 4 Å MS (40 mg) in 3 mL of MeCN was
refluxed until the starting materials disappeared as
monitored by TLC. The cooled solution was concentrated
and partitioned between brine and Et2O. The organic phase
was dried over MgSO4 and concentrated. The residue was
purified via chromatography to give 3.
(6) Selected data for 3a: [a]D18 +138.0 (c 0.75, CHCl3). IR
(film): 1734, 1664, 1573 cm–1. 1H NMR (300 MHz, CDCl3):
d = 4.18–4.02 (m, 4 H), 3.28 (t, J = 3.6 Hz, 1 H), 3.22–3.18
(m, 1 H), 3.12–3.10 (m, 1 H), 3.03–2.99 (m, 1 H), 2.81 (dt,
J = 18.0, 6.5 Hz, 1 H), 2.64 (dd, J = 14.0, 3.4 Hz, 1 H), 2.36
(dd, J = 14.0, 8.8 Hz, 1 H), 2.02–1.96 (m, 1 H), 1.82–1.61
(m, 5 H), 1.25 (t, J = 7.1 Hz, 3 H), 1.24 (t, J = 7.1 Hz, 3 H),
Synlett 2006, No. 8, 1181–1184 © Thieme Stuttgart · New York