Journal of the American Chemical Society
Communication
Zhang, Y.; García-Fortanet, J.; Kinzel, T.; Buchwald, S. L. Science 2009,
325, 1661.
In conclusion, we have developed a ruthenium-catalyzed
transformation of aryl and alkenyl triflates to the corresponding
bromides and iodides. The strong electron-donating character of
the Cp* ligand likely contributes to the high catalytic activity by
facilitating oxidative addition of aryl and alkenyl triflates to
ruthenium(II) complexes to give arylruthenium(IV) and 1-
ruthenacyclopropene complexes, respectively.
(12) (a) Shirakawa, E.; Imazaki, Y.; Hayashi, T. Chem. Commun. 2009,
5088. The low-valent ruthenium catalysis is also effective for the
reaction of alkenyl triflates with zinc thiolates to give alkenyl sulfides.
See: (b) Imazaki, Y.; Shirakawa, E.; Hayashi, T. Tetrahedron 2011, 67,
10212.
(13) The most efficient conditions found in the previous study12a
[Ru(acac)3 (3 mol %), EtMgBr (12 mol %), and 3,4,7,8-tetramethyl-
1,10-phenanthroline (3 mol %) in 1,4-dioxane at 120 °C] were totally
ineffective for the transformation of 1a to 2a. Also, bromide 2a was not
produced at all in the reaction in DMI.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures and characterization data for all the
products. This material is available free of charge via the Internet
(14) Gassman, P. G.; Mickelson, J. W.; Sowa, J. R., Jr. J. Am. Chem. Soc.
1992, 114, 6942.
(15) Mixtures of stereoisomers can readily be obtained from aldehydes
simply by treatment with Tf2O and a base such as 2,6-di-tert-butyl-4-
methylpyridine. See ref 6 and: (a) Stang, P. J.; Treptow, W. Synthesis
1980, 283. (E)-1-Alken-1-yl triflates can be synthesized from the
corresponding silyl enolates in a stereoretentive manner. However, the
stereoselective synthesis of (E)-silyl enolates is generally not facile. See:
(b) Matsuzawa, S.; Horiguchi, Y.; Nakamura, E.; Kuwajima, I.
Tetrahedron 1989, 45, 349. (c) Ohmura, T.; Yamamoto, Y.; Miyaura,
N. Organometallics 1999, 18, 413.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
(16) Chen, H.; Harman, W. D. J. Am. Chem. Soc. 1996, 118, 5672.
(17) The existence of an apparent border between 1-metal-
lacyclopropenes and η2-alkenylmetals has been debated. See:
(a) Casey, C. P.; Brady, J. T.; Boller, T. M.; Weinhold, F.; Hayashi, R.
K. J. Am. Chem. Soc. 1998, 120, 12500. (b) Frohnapfel, D. S.; Templeton,
J. L. Coord. Chem. Rev. 2000, 206−207, 199. To the best of our
knowledge, no reports of the observation of 1-ruthenacyclopropenes or
η2-alkenylrutheniums are available. However, both of these have been
proposed as intermediates in antihydrosilylation of alkynes catalyzed by
[Cp*Ru(MeCN)3]+ on the basis of DFT calculations. See: (c) Chung,
L. W.; Wu, Y.-D.; Trost, B. M.; Ball, Z. T. J. Am. Chem. Soc. 2003, 125,
11578.
(18) Naphthyl triflates are more reactive than phenyl triflates, probably
because a 10-π-electron (10π) aromatic system is much less susceptible
to the loss of π-bond character than a 6π system. Naphthyl triflates are
likely to be transformed via D′ in a similar manner as alkenyl triflates.
(19) The result that [Cp*Ru(η6-1e)]OTf showed no catalytic activity
under the conditions of Table 2, entry 5 excludes SNAr pathways
accelerated by π complexation with the metal. Ruthenium complexes are
known to catalyze or mediate SNAr reactions of aryl halides through
ruthenium−η6-haloarene complexes. See: (a) Otsuka, M.; Endo, K.;
Shibata, T. Chem. Commun. 2010, 46, 336. (b) Otsuka, M.; Yokoyama,
H.; Endo, K.; Shibata, T. Synthesis 2010, 2601. (c) Dembek, A. A.; Fagan,
P. J. Organometallics 1996, 15, 1319. (d) West, C. W.; Rich, D. H. Org.
Lett. 1999, 1, 1819.
ACKNOWLEDGMENTS
■
This work was financially supported in part by a Grant-in-Aid for
the Global COE Program “Integrated Materials Science” from
the Ministry of Education, Culture, Sports, Science and
Technology of Japan. Y.I. thanks the JSPS for a Research
Fellowship for Young Scientists.
REFERENCES
■
(1) Hartwig, J. F. Organotransition Metal Chemistry: From Bonding to
Catalysis; University Science Books: Sausalito, CA, 2010; pp 877−965.
(2) (a) Rieke, R. D. Science 1989, 246, 1260. (b) Knochel, P.; Dohle,
W.; Gommermann, N.; Kneisel, F. F.; Kopp, F.; Korn, T.; Sapountzis, I.;
Vu, V. A. Angew. Chem., Int. Ed. 2003, 42, 4302.
(3) (a) Jasperse, C. P. Chem. Rev. 1991, 91, 1237. (b) Rossi, R. A.;
Pierini, A. B.; Penenory, A. B. Chem. Rev. 2003, 103, 71.
́
̃
̃
(4) Larock, R. C. Comprehensive Organic Transformations, 2nd ed.;
Wiley-VCH: New York, 1999; pp 619−626.
(5) Hodgson, H. H. Chem. Rev. 1947, 40, 251.
(6) Ritter, K. Synthesis 1993, 735.
(7) Via alkenylstannanes: (a) Wulff, W. D.; Peterson, G. A.; Bauta, W.
E.; Chan, K.-S.; Faron, K. L.; Gilbertson, S. R.; Kaesler, R. W.; Yang, D.
C.; Murray, C. K. J. Org. Chem. 1986, 51, 277. (b) Grunewald, G. L.;
Seim, M. R.; Regier, R. C.; Criscione, K. R. Bioorg. Med. Chem. 2007, 15,
1298. (c) Rawat, M.; Prutyanov, V.; Wulff, W. D. J. Am. Chem. Soc. 2006,
128, 11044. Via alkenylboronates: (d) Thompson, A. L. S.; Kabalka, G.
W.; Akula, M. R.; Huffman, J. W. Synthesis 2005, 547.
(8) Aryl triflates are efficient alternatives to aryl halides in transition-
metal-catalyzed reactions. However, they cannot be used as precursors
for arylmagnesium/lithium reagents and aryl radicals.
(9) A few examples of the direct synthesis of aryl halides from phenols
are available, but they require forcing conditions. See: (a) Wiley, G. A.;
Hershkowitz, R. L.; Rein, B. M.; Chung, B. C. J. Am. Chem. Soc. 1964, 86,
964. (b) Bay, E.; Bak, D. A.; Timony, P. E.; Leone-Bay, A. J. Org. Chem.
1990, 55, 3415.
(10) Strongly electron-deficient aryl triflates are transformed to the
halides by nucleophilic aromatic substitution (SNAr). For recent
examples, see: (a) Kundu, S. K.; Tan, W. S.; Yan, J.-L.; Yang, J.-S. J.
Org. Chem. 2010, 75, 4640. (b) Trost, B. M.; O’Boyle, B. M. Org. Lett.
2008, 10, 1369. (c) Wang, Z.; Shangguan, N.; Cusick, J. R.; Williams, L.
J. Synlett 2008, 213.
(20) An aryl ruthenium(II) complex is known to react with
bromobenzene to give the corresponding phenylarene. The reaction is
considered to proceed through oxidative addition and reductive
elimination. See: (a) Oi, S.; Funayama, R.; Hattori, T.; Inoue, Y.
Tetrahedron 2008, 64, 6051. For a review of the related catalytic
reactions, see: (b) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew.
Chem., Int. Ed. 2009, 48, 9792.
(21) Reversible oxidative addition and reductive elimination between
allyl halides and Cp*Ru(II) complexes are known. See: (a) Nagashima,
H.; Mukai, K.; Itoh, K. Organometallics 1984, 3, 1314. (b) Nagashima,
H.; Mukai, K.; Shiota, Y.; Yamaguchi, K.; Ara, K.; Fukahori, T.; Suzuki,
H.; Akita, M.; Moro-oka, Y.; Itoh, K. Organometallics 1990, 9, 799.
(22) Jutand, A.; Mosleh, A. Organometallics 1995, 14, 1810.
(23) In oxidative additions of alkenyl electrophiles (C to D in Scheme
3), the reactivity is likely to be governed simply by the stability of the
−
leaving anion, where OTf is more stable than I−. For relative leaving
group abilities in SN1 reactions, see: Noyce, D. S.; Virgilio, J. A. J. Org.
Chem. 1972, 37, 2643.
(11) (a) Shen, X.; Hyde, A. M.; Buchwald, S. L. J. Am. Chem. Soc. 2010,
132, 14076. (b) Pan, J.; Wang, X.; Zhang, Y.; Buchwald, S. L. Org. Lett.
2011, 13, 4974. The transformation of aryl triflates to aryl fluorides has
also been reported. See: (c) Watson, D. A.; Su, M.; Teverovskiy, G.;
D
dx.doi.org/10.1021/ja307771d | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX