C O M M U N I C A T I O N S
more potent than R-GalCer and also exhibit a stronger Th1 cytokine
response, probably due to enhanced binding to CD1d or selective
interaction with CD8+ versus CD4+ NKT cells,26 although this issue
has been debated.27 The origin of the enhanced potency and Th1
selectivity remains to be fully addressed. This study provides a new
direction for the development of novel glycolipid-based immuno-
therapeutic agents which are more potent than R-GalCer and are
able to exhibit greater Th1-type cytokine profiles.
Figure 3. IFN-γ and IL-4 secretion by human NKT cell line when
stimulated by 10 ng/mL of indicated glycolipids. IFN-γ and IL-4 release
was measured after 16 h of culture. Results are expressed as relative
activities as mean of duplicate assays ( standard deviation. Representative
data from one of three experiments are shown.
Acknowledgment. We would like to thank Prof. I. A. Wilson
for providing hCD1d protein. We also thank the Skaggs Institute
and the NIH for research support.
Supporting Information Available: Synthesis of fatty acyl chain
analogues 2-35; amounts of IFN-γ and IL-4 secretion in response to
these glycolipids; results from competitive binding study of hCD1d
with glycolipids; complete refs 9, 15, 18, 20b, and 22. This material is
References
(1) Morita, M.; Motoki, K.; Akimoto, K.; Natori, T.; Sakai, T.; Sawa, E.;
Yamaji, K.; Koezuka, Y.; Kobayashi, E.; Fukushima, H. J. Med. Chem.
1995, 38, 2176-2187.
(2) Hayakawa, Y.; Godfrey, D. I.; Smyth, M. J. Curr. Med. Chem. 2004, 11,
241-252.
(3) Joyce, S.; Woods, A. S.; Yewdell, J. W.; Bennink, J. R.; De Silva, A. D.;
Boesteanu, A.; Balk, S. P.; Cotter, R. J.; Brutkiewicz, R. R. Science 1998,
279, 1541-1544.
(4) Moody, D. B.; Porcelli, S. A. Nat. ReV. Immunol. 2003, 3, 11-22.
(5) Kronenberg, M. Annu. ReV. Immunol. 2005, 23, 877-900.
(6) Godfrey, D. I.; MacDonald, H. R.; Kronenberg, M.; Smyth, M. J.; Van
Kaer, L. Nat. ReV. Immunol. 2004, 4, 231-237.
(7) Taniguchi, M.; Harada, M.; Kojo, S.; Nakayama, T.; Wakao, H. Annu.
ReV. Immunol. 2003, 21, 483-513.
(8) Gonzalez-Aseguinolaza, G.; Van Kaer, L.; Bergmann, C. C.; Wilson, J.
M.; Schmieg, J.; Kronenberg, M.; Nakayama, T.; Taniguchi, M.; Koezuka,
Y.; Tsuji, M. J. Exp. Med. 2002, 195, 617-624.
(9) Giaccone, G.; et al. Clin. Cancer Res. 2002, 8, 3702-3709.
(10) Smyth, M. J.; Godfrey, D. I. Nat. Immunol. 2000, 1, 459-460.
(11) Berkers, C. R.; Ovaa, H. Trends Pharmacol. Sci. 2005, 26, 252-257.
(12) Goff, R. D.; Gao, Y.; Mattner, J.; Zhou, D.; Yin, N.; Cantu, C., III; Teyton,
L.; Bendelac, A.; Savage. P. B. J. Am. Chem. Soc. 2004, 126, 13602-
13603.
Figure 4. Superimposition of the docking results of fatty acyl chain
analogues 14-16 with hCD1d. The R2 helix is removed for clarity. 14
(green); 15 (yellow); 16 (orange).
us to evaluate analogues with a longer spacer chain (Figure 3).
Elongation of the spacer chain length drastically enhanced overall
cytokine production, while piperidine analogue 12 diminished their
activity. 4-Fluorophenylpropionyl analogue 11 demonstrated more
potent cytokine production than 4-CF3 analogue 10 and 4-OMe
analogue 8. Of these compounds, the longer alkyl chain analogues
14-16 are 4 times more potent and biased for IFN-γ secretion.
These results show that it is possible to potentiate and tune the
Th1/Th2 cytokine profile by the introduction of a terminal aromatic
group with an appropriate length of spacer chain. To visualize the
interactions between the designed analogues and human CD1d,
Autodock 3.024 was utilized to model the binding of selected
compounds in the hCD1d hydrophobic groove (Figure 4). 13-16
were individually docked, and their results did not vary significantly
from the crystal structure of R-GalCer bound to hCD1d.22 In each
case, the phytosphingosine tail extended into the F′ pocket and the
A′ pocket was occupied by the fatty acyl chain with the galactose
headgroup presented in nearly the same configuration. Introduction
of a terminal phenyl group in the R-GalCer analogues seemed to
promote additional specific interactions between 14, 15, and the
phenol ring of Tyr73 and between 16 and Trp40. Docking of
compounds with a shorter spacer chain on the fatty acyl tail showed
limited interaction between terminal functional groups and aromatic
residues in the A′ pocket.
(13) Oki, S.; Chiba, A.; Yamamura, T.; Miyake, S. J. Clin. InVest. 2004, 113,
1631-1640.
(14) Miyamoto, K.; Miyake, S.; Yamamura, T. Nature 2001, 413, 531-534.
(15) Porcelli, S. A.; et al. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 3383-
3388.
(16) Schmieg, J.; Yang, G.; Franck, R. W.; Tsuji, M. J. Exp. Med. 2003, 198,
1631-1641.
(17) Yang, G.; Schmieg, J.; Tsuji, M.; Franck, R. W. Angew. Chem., Int. Ed.
2004, 43, 3818-3822.
(18) Kronenberg, M.; et al. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 12254-
12259.
(19) Cantu, C., III; Benlagha, K.; Savage, P. B.; Bendelac, A.; Teyton, L. J.
Immunol. 2003, 170, 4673-4682.
(20) (a) Kinjo, Y.; Wu, D.; Kim, G.; Xing, G. W.; Poles, M. A.; Ho, D. D.;
Tsuji, M.; Kawahara, K.; Wong, C. H.; Kronenberg, M. Nature 2005,
434, 520-525. (b) Wong, C. H.; et al. Proc. Natl. Acad. Sci. U.S.A. 2005,
102, 1531-1536. (c) Xing, G. W.; Wu, D.; Poles, M. A.; Horowitz, A.;
Tsuji, M.; Ho, D. D.; Wong, C. H. Bioorg. Med. Chem. 2005, 13, 2907-
2916.
(21) Wu, D.; Zajonc, D. M.; Fujio, M.; Sullivan, B. A.; Kinjo, Y.; Kronenberg,
M.; Wilson, I. A.; Wong, C. H. Proc. Natl. Acad. Sci. U.S.A. 2006, 103,
3972-3977.
We also examined hCD1d binding of compounds 14-16 using
isoelectric focusing (IEF) electrophoresis25 (see Supporting Infor-
mation). Compounds 14-16 demonstrated more potent inhibition
of GT1b-hCD1d binding than R-GalCer and a less potent analogue
4, supporting our hypothesis.
In conclusion, we have found that introduction of an aromatic
group to the fatty acyl chain greatly enhances IFN-γ/IL-4 secretion
and enables the tuning of Th1/Th2 cytokine profile, possibly through
alteration of glycolipid/CD1d complex stability. Compounds 14-
16 represent the first examples of NKT cell agonists which are
(22) Cerundolo, V.; et al. Nat. Immunol. 2005, 6, 819-826.
(23) Zajonc, D. M.; Cantu, C., III; Mattner, J.; Zhou, D.; Savage, P. B.;
Bendelac, A.; Wilson, I. A.; Teyton, L. Nat. Immunol. 2005, 6, 810-
818.
(24) Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.;
Belew, R. K.; Olson, A. J. J. Comput. Chem. 1998, 19, 1639-1662.
(25) Cantu, C., III; Benlagha, K.; Savage. P. B.; Bendelac, A.; Teyton, L. J.
Immunol. 2003, 170, 4673-4682.
(26) Takahashi, T.; Chiba, S.; Nieda, M.; Azuma, T.; Ichihara, S.; Shibata,
Y.; Juji, T.; Hirai, H. J. Immunol. 2002, 168, 3140-3144.
(27) Ho, L. P.; Urban, B. C.; Jones, L.; Ogg, G. S.; McMichael, A. J. J Immunol.
2004, 172, 7350-7358.
JA062740Z
9
J. AM. CHEM. SOC. VOL. 128, NO. 28, 2006 9023