T. K. Chakraborty, B. K. Mohan / Tetrahedron Letters 47 (2006) 4999–5002
5001
OMe
OMe
N
O
N
O
DMP, py, CH2Cl2,
rt, 2 h
CrCl2, NiCl2 (0.1%)
DMSO, rt, 5 h
O
O
O
O
O
O
18
23
+
TMSO
TMSO
85%
62%
25
24
O
HO
Scheme 4. Coupling of the C1–C16 (18) and C17–C21 (23) fragments.
alkylation of the Na-enolate of 12 with MeI was followed
by reductive removal of the chiral auxiliary to give alco-
hol 13 as the only isomer in 46% overall yield. Swern oxi-
dation10 of 13 gave an intermediate aldehyde, which was
reacted with the Li-enolate of ethyl acetate to give the b-
hydroxy ester 14 as a mixture of diastereoisomers in 85%
yield. Saponification of 14 and subsequent coupling with
L-pipecolic acid methyl ester furnished the amide 15 in
67% overall yield.
References and notes
1. Fehr, T.; Sanglier, J.-J.; Schuler, W.; Gschwind, L.;
Ponelle, M.; Schilling, W.; Wioland, C. J. Antibiot. 1996,
49, 230–234.
2. (a) Snyder, S. H.; Sabatini, D. M.; Lai, M. M.; Steiner, J.
P.; Hamilton, G. S.; Suzdak, P. D. Trends Pharmacol. Sci.
1998, 19, 21–26; (b) Steiner, J. P.; Connolly, M. A.;
Valentine, H. I.; Hamilton, G. S.; Dawson, T. M.; Hester,
L.; Snyder, S. H. Nat. Med. 1997, 3, 421–428; (c)
Hamilton, G. S.; Huang, W.; Connolly, M. A.; Ross, D.
T.; Guo, H.; Valentine, H. L.; Suzdak, P. D.; Steiner, J. P.
Bioorg. Med. Chem. Lett. 1997, 7, 1785–1790.
3. Brittain, D. E. A.; Griffiths-Jones, C. M.; Linder, M. R.;
Smith, M. D.; McCusker, C.; Barlow, J. S.; Akiyama, R.;
Yasuda, K.; Ley, S. V. Angew. Chem., Int. Ed. 2005, 44,
2732–2737.
Oxidation of the b-hydroxy amide 15 with Dess–Martin
periodinane (DMP)11 gave a ‘1,2,3-triketo’ intermedi-
ate,12 which was subjected to desilylation resulting in
the spontaneous formation of the hemiketal 16 in 60%
yield. Disilylation of 16 gave a di-TMS–ether intermedi-
ate. Brief exposure of this intermediate di-TMS–ether to
mild acid selectively deprotected the primary hydroxyl
group to furnish the TMS–ether of the hemiketal 17 in
70% yield. Finally oxidation of 17 gave the aldehyde
18 in 96% yield.
4. Fuwa, H.; Okamura, Y.; Natsugari, H. Tetrahedron 2004,
60, 5341–5352.
5. (a) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413–
4450; (b) Furstner, A. Angew. Chem., Int. Ed. 2000, 39,
¨
3013–3043; (c) Trnka, T. M.; Grubbs, R. H. Acc. Chem.
Res. 2001, 34, 18–29; (d) Nicolaou, K. C.; Bulger, P. G.;
Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4490–4527.
6. For our synthesis of the C22–C34 fragment of antascom-
icin A see the following paper.
7. (a) Crimmins, M. T.; King, B. W.; Tabet, E. A. J. Am.
Chem. Soc. 1997, 119, 7883–7884; For some earlier leading
references of the oxazolidinethione based Aldol reactions
giving ‘non-Evans’ syn products see: (b) Fujita, E.; Nagao,
Y. Adv. Heterocycl. Chem. 1989, 45, 1–36; (c) Mukaiyama,
T.; Kobayashi, S. Org. React. 1994, 46, 1–103.
8. (a) Chakraborty, T. K.; Jayaprakash, S.; Laxman, P.
Tetrahedron 2001, 57, 9461–9467; (b) Delaunay, D.;
Toupet, L.; Le Corre, M. J. Org. Chem. 1995, 60, 6604–
6607.
Synthesis of the C19–C21 fragment started with the
mono-TBS ether of pentane-1,5-diol 19 (Scheme 3).
Swern oxidation of 19 followed by a Takai reaction13
furnished the vinyl iodide 20 in 73% yield. Acid-cata-
lyzed desilylation of 20 gave 21 in 81% yield. Tosylation
of 21 was followed by nucleophilic substitution of the
tosylate group by PhSeꢀ, generated in situ by sodium
borohydride reduction of diphenyl diselenide,14 giving
the phenylselenide 22, in 78% overall yield, which was
then subjected to an oxidation–elimination process.
Oxidation of selenide 22 using mCPBA and subsequent
b-elimination of the resulting selenoxide furnished the
diene 23 in 71% yield.
9. Chakraborty, T. K.; Suresh, V. R. Tetrahedron Lett. 1998,
39, 7775–7778.
10. Mancuso, A. J.; Swern, D. Tetrahedron Lett. 1981, 35,
2473–2476.
11. Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113,
7277.
12. Batchelor, M. J.; Gillespie, R. J.; Golec, J. M. C.;
Hedgecock, C. J. R. Tetrahedron Lett. 1993, 34, 167–170.
13. Takai, K.; Nitta, K.; Utimoto, K. J. Am. Chem. Soc. 1986,
108, 7408–7410.
14. (a) Reich, H. J.; Wollowitz, S.; Trend, J. E.; Chow, F.;
Wendelborn, D. F. J. Org. Chem. 1978, 43, 1697–1705; (b)
Clark, R. D.; Heathcock, C. H. J. Org. Chem. 1976, 41,
1396–1403.
15. (a) Takai, K.; Kimura, K.; Kuroda, T.; Hiyama, T.;
Nozaki, H. Tetrahedron Lett. 1983, 24, 5281–5284; (b) Jin,
H.; Uenishi, J.; Christ, W. J.; Kishi, Y. J. Am. Chem. Soc.
1986, 108, 5644–5646; For reviews, see: (c) Cintas, P.
Synthesis 1992, 248–257; (d) Hashmi, A. S. K. J. Prakt.
Chem. 1996, 338, 491–495; (e) Wessjohann, L. A.; Scheid,
G. Synthesis 1999, 1–36; (f) Fu¨rstner, A. Chem. Rev. 1999,
Coupling of the C1–C16 (18) and C17–C21 (23) frag-
ments to build the target C1–C21 moiety is shown in
Scheme 4. A Nozaki–Hiyama–Kishi coupling15 was em-
ployed to carry out the coupling, giving the coupled
product 24 in 62% yield as a mixture of isomers. Finally,
Dess–Martin oxidation11 of 24 furnished dienone 25,16
the target C1–C21 fragment of antascomicin A, in
85% yield.
Further work is now in progress to complete the total
synthesis of antascomicin A (1).
Acknowledgements
The authors wish to thank CSIR, New Delhi, for a
research fellowship (B.K.M.).