C O M M U N I C A T I O N S
that LF1 can respond to changes in intracellular Pb2+ levels within
living mammalian cells.
In conclusion, LF1 is a new type of synthetic fluorescent sensor
for probing Pb2+ in living biological samples. Desirable features
of this fluorescein-based reagent include a selective turn-on response
for Pb2+ over competing metal ions in water, sensitivity to EPA
limits of lead poisoning, visible excitation and emission profiles to
minimize cellular autofluorescence and photodamage, and the ability
to track changes in Pb2+ levels within living cells. Immediate goals
to expand the utility of LF1 and related chemosensor platforms for
studies of lead biology include optimization of sensitivities and
selectivities to Pb2+, as well as improvement of optical brightness
values and dynamic ranges for imaging applications.
Acknowledgment. We thank the University of California,
Berkeley, the Camille and Henry Dreyfus Foundation, the Arnold
and Mabel Beckman Foundation, the American Federation for
Aging Research, and the NSF (CAREER Award CHE-0548245)
for funding this work. E.W.M. was supported by a Chemical
Biology Interface Training Grant from the NIH (T32 GM066698).
We thank Ms. Sarah Bell for preliminary experiments.
Supporting Information Available: Synthetic and experimental
details (PDF). This material is available free of charge via the Internet
Figure 1. (a) Fluorescence response of 5 µM LF1 to Pb2+. Spectra shown
are for Pb2+ concentrations of 0, 1, 2, 3, 4, 5, 10, 15, 20, 25, 35, 50, and
75 µM. Spectra were acquired in 20 mM HEPES, pH 7, with excitation at
490 nm. (b) Fluorescence responses of 5 µM LF1 to various metal ions.
Bars represent the final integrated fluorescence response (Ff) over the initial
integrated emission (Fi). Spectra were acquired in 20 mM HEPES, pH 7.
White bars represent the addition of an excess of the appropriate metal ion
(2 mM for Li+, Na+, K+, Mg2+, and Ca2+, 75 µM for all other cations
except entry 11) to a 5 µM solution of LF1. Black bars represent the addition
of 75 µM Pb2+ to the solution. Excitation was provided at 490 nm, and the
References
(1) Flegal, A. R.; Smith, D. R. EnViron. Res. 1992, 58, 125-133.
(2) Claudio, E. S.; Godwin, H. A.; Magyar, J. S. Prog. Inorg. Chem. 2003,
51, 1-144 and references therein.
(3) Winder, C.; Carmichael, N. G.; Lewis, P. D. Trends Neurosci. 1982, 5,
207-209.
(4) Araki, S.; Sato, H.; Yokoyama, K.; Murata, K. Am. J. Ind. Med. 2000,
37, 193-204.
emission was integrated over 500-650 nm. 1, Li+; 2, Na+; 3, K+; 4, Mg2+
5, Ca2+; 6, Mn2+; 7, Fe2+; 8, Co2+; 9, Ni2+; 10, Cu2+; 11, Cu2+, 25 µM;
12, Zn2+; 13, Cd2+; 14, Hg2+; 15, Pb2+
;
(5) Cory-Slechta, D. A. AdV. BehaV. Pharmacol. 1984, 4, 211-255.
(6) Bressler, J.; Kim, K.-A.; Chakraborti, T.; Goldstein, G. Neurochem. Res.
1999, 24, 595-600.
.
(7) Hanas, J. S.; Rodgers, J. S.; Bantle, J. A.; Cheng, Y.-G. Mol. Pharmacol.
1999, 56, 982-988.
(8) Bouton, C. M. L. S.; Frelin, L. P.; Forde, C. E.; Godwin, H. A.; Pevsner,
J. J. Neurochem. 2001, 76, 1724-1735.
(9) Ghering, A. B.; Jenkins, L. M. M.; Schenck, B. L.; Deo, S.; Mayer, R.
A.; Pikaart, M. J.; Omichinski, J. G.; Godwin, H. A. J. Am. Chem. Soc.
2005, 127, 3751-3759.
(10) Magyar, J. S.; Weng, T.-C.; Stern, C. M.; Dye, D. F.; Rous, B. W.; Payne,
J. C.; Bridgewater, B. M.; Mijovilovich, A.; Parkin, G.; Zaleski, J. M.;
Penner-Hahn, J. E.; Godwin, H. A. J. Am. Chem. Soc. 2005, 127, 9495-
9505.
(11) Deo, S.; Godwin, H. A. J. Am. Chem. Soc. 2000, 122, 174-175.
(12) Chen, P.; Greenberg, B.; Taghavi, S.; Romano, C.; van der Lelie, D.; He,
C. Angew. Chem., Int. Ed. 2005, 44, 2715-2719.
(13) Li, J.; Lu, Y. J. Am. Chem. Soc. 2000, 122, 10466-10467.
(14) Liu, J.; Lu, Y. J. Am. Chem. Soc. 2003, 125, 6642-6643.
(15) Liu, J.; Lu, Y. J. Am. Chem. Soc. 2004, 126, 12298-12305.
(16) Chang, I.-H.; Tulock, J. J.; Liu, J.; Kim, W.-S.; Cannon, D. M., Jr.; Lu,
Y.; Bohn, P. W.; Sweedler, J. V.; Cropek, D. M. EnViron. Sci. Technol.
2005, 39, 3756-3761.
(17) Kim, I.-K.; Dunkhorst, A.; Gilbert, J.; Bunz, U. H. F. Macromolecules
2005, 38, 4560-4562.
(18) Chae, M.-Y.; Yoon, J.; Czarnik, A. W. J. Mol. Recognit. 1996, 9, 297-
303.
(19) Xia, W.-S.; Schmehl, R. H.; Li, C.-J.; Mague, J. T.; Luo, C.-P.; Guldi, D.
M. J. Phys. Chem. B 2002, 106, 833-843.
Figure 2. Live-cell imaging of intracellular Pb2+ levels by confocal
microscopy. (A) Control HEK cells incubated with 20 µM LF1-AM for 90
min at 37 °C. (B) LF1-stained HEK cells exposed to 200 µM Pb(OAc)2
and 1 mM sodium citrate for 40 min at 37 °C. (C) LF1-loaded,
lead-supplemented cells treated with 2 mM of the heavy metal chelator
TPEN for 5 min at 25 °C. (D) Brightfield image of live HEK cells shown
in panel C, confirming their viability. Scale bar ) 10 µm.
(20) Chen, C.-T.; Huang, W.-P. J. Am. Chem. Soc. 2002, 124, 6246-6247.
(21) Metivier, R.; Leray, I.; Valeur, B. Chem. Commun. 2003, 996-997.
(22) Hayashita, T.; Qing, D.; Minagawa, M.; Lee, J. C.; Ku, C. H.; Teramae,
N. Chem. Commun. 2003, 2160-2161.
(23) Sun, M.; Shangguan, D.; Ma, H.; Nie, L.; Li, X.; Xiong, S.; Liu, G.;
Thiemann, W. Biopolymers 2003, 72, 413-420.
(24) Kim, S. K.; Lee, J. K.; Lim, J. M.; Kim, J. W.; Kim, J. S. Bull. Korean
Chem. Soc. 2004, 25, 1247-1250.
(25) Kwon, J. Y.; Jang, Y. J.; Lee, Y. J.; Kim, K. M.; Seo, M. S.; Nam, W.;
Yoon, J. J. Am. Chem. Soc. 2005, 127, 10107-10111.
(26) Zhang, Y.; Xiang, W. C.; Yang, R. H.; Liu, F.; Li, K. A. J. Photochem.
Photobiol. A 2005, 173, 264-270.
loaded with LF1 and Pb2+ with the heavy metal chelator TPEN (2
mM) for 5 min at 25 °C reverses the observed fluorescence increases
(Figure 2c), and further control experiments without dye give no
fluorescence over background levels. Finally, brightfield transmis-
sion measurements confirm that the cells are viable throughout the
imaging studies (Figure 2d). Taken together, these results show
(27) Kavallieratos, K.; Rosenberg, J. M.; Chen, W.-Z.; Ren, T. J. Am. Chem.
Soc. 2005, 127, 6514-6515.
(28) Hayashita, T.; Sawano, H.; Higuchi, T.; Indo, M.; Hiratani, K.; Zhang,
Z.-Y.; Bartsch, R. A. Anal. Chem. 1999, 71, 791-795.
JA063029X
9
J. AM. CHEM. SOC. VOL. 128, NO. 29, 2006 9317