Total Syntheses of Amphidinolide X and Y
A R T I C L E S
Scheme 1. Retrosynthetic Analysis of Amphidinolide X (1) and Y
(2), Converging to the Common Synthon Da
recent recollection of the Amphidinium Y-42 strain, which not
only provided 1 together with three other known amphidinolides
but also afforded tiny amounts of a novel congener, designated
amphidinolide Y (2); this product exists as an equilibrium
mixture of the dominant C.6-keto- and the minor C.6(9)-
hemiacetal form.6 Although 2 contains a 17-membered lactone
rather than the conspicuous 16-membered macrodiolide core
of its companion amphidinolide X (1), it is obviously closely
related to the latter and is thought to be its biogenetic pre-
cursor. In line with this notion, oxidative cleavage of the
R-hydroxyketone moiety with lead tetraacetate followed by
spontaneous lactonization of the resulting acid with the hy-
droxyl group in vicinity converted compound 2 into 1 in fair
yield.6
During our studies on the total synthesis7 and biological
evaluation8 of various natural products of marine or terrestrial
origin, a strong interest arose in the amphidinolide class.9,10
These compounds constitute obvious targets for an exploratory
program at the chemistry/biology interface because of their
challenging and diverse molecular architectures and because they
are extremely scare, thus rendering a detailed assessment of their
promising anticancer activities difficult if one relies on extraction
from the producing dinoflagellates only. As part of this program,
we now present the first total syntheses of amphidinolide X,11
its nonnatural stereomer 47, as well as of its biosynthetic
precursor amphidinolide Y. Moreover, from the purely chemical
perspective, this endeavor provided an excellent opportunity to
scrutinize methodology for catalytic C-C-bond formation
previously developed in this laboratory.
(4) Tsuda, M.; Izui, N.; Shimbo, K.; Sato, M.; Fukushi, E.; Kawabata, J.;
Katsumata, K.; Horiguchi, T.; Kobayashi, J. J. Org. Chem. 2003, 68,
5339.
(5) For a recent review on macrodiolides see: Kang, E. J.; Lee, E. Chem.
ReV. 2005, 105, 4348.
(6) Tsuda, M.; Izui, N.; Shimbo, K.; Sato, M.; Fukushi, E.; Kawabata, J.;
Kobayashi, J. J. Org. Chem. 2003, 68, 9109.
(7) Recent examples: (a) Fu¨rstner, A.; Domostoj, M. M.; Scheiper, B. J. Am.
Chem. Soc. 2005, 127, 11620. (b) Fu¨rstner, A.; Turet, L. Angew. Chem.,
Int. Ed. 2005, 44, 3462. (c) Fu¨rstner, A.; Radkowski, K.; Peters, H. Angew.
Chem., Int. Ed. 2005, 44, 2777. (d) Scheiper, B.; Glorius, F.; Leitner, A.;
Fu¨rstner, A. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 11960. (e) Fu¨rstner,
A.; Jeanjean, F.; Razon, P. Angew. Chem., Int. Ed. 2002, 41, 2097. (f)
Fu¨rstner, A.; Mu¨ller, C. Chem. Commun. 2005, 5583. (g) Fu¨rstner, A.;
Radkowski, K.; Wirtz, C.; Goddard, R.; Lehmann, C. W.; Mynott, R. J.
Am. Chem. Soc. 2002, 124, 7061. (h) Fu¨rstner, A.; Mamane, V. Chem.
Commun. 2003, 2112. (i) Fu¨rstner, A.; Wuchrer, M. Chem. Eur. J. 2006,
12, 76. (j) Fu¨rstner, A.; Hannen, P. Chem. Eur. J. 2006, 12, 3006.
(8) (a) Fu¨rstner, A.; Kirk, D.; Fenster, M. D. B.; A¨ıssa, C.; De Souza, D.;
Mu¨ller, O. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 8103. (b) Fu¨rstner, A.
Angew. Chem., Int. Ed. 2003, 42, 3582. (c) Fu¨rstner, A. Eur. J. Org. Chem.
2004, 943. (d) Fu¨rstner, A.; Feyen, F.; Prinz, H.; Waldmann, H. Tetrahedron
2004, 60, 9543.
a Note the “shift” in the numbering scheme for the two natural products
caused by their different ring sizes and connectivities.
Results and Discussion
General Retrosynthetic Considerations. Because of the
identity of the tetrahydrofuran segments in 1 and 2, it should
be possible to use a common building block for both syntheses.
While the ester linkages forming the macrodiolide ring of
amphidinolide X constitute obvious sites for disconnection of
this target, it was envisaged to assemble the required C.7-C.22
diol entity B by metal-catalyzed cross coupling at the C.13-
C.14 bond (Scheme 1). This strategy employs building blocks
A, C, and D of similar size and ultimately ensures high
flexibility; more importantly, however, it allows one to address
the critical formation of the tetrasubstituted chiral center C.19
residing at the ether bridge in D in an early stage of the synthesis
campaign. Because D can be directly used for the envisaged
total synthesis of amphidinolide Y (2) as well by a similar
fragment-coupling process at the corresponding C.12-C.13
bond, an excellent overall “economy of steps”,12 a favorable
methodological redundancy, and hence a significant convergence
of the entire program should be secured. The C.1-C.12
fragment E to be embedded into 2, which carries another
(9) (a) A¨ıssa, C.; Riveiros, R.; Ragot, J.; Fu¨rstner, A. J. Am. Chem. Soc. 2003,
125, 15512. (b) Fu¨rstner, A.; A¨ıssa, C.; Riveiros, R.; Ragot, J. Angew.
Chem., Int. Ed. 2002, 41, 4763.
(10) For total syntheses of amphidinolides reported by other groups, see: (a)
Williams, D. R.; Kissel, W. S. J. Am. Chem. Soc. 1998, 120, 11198. (b)
Williams, D. R.; Myers, B. J.; Mi, L. Org. Lett. 2000, 2, 945. (c) Williams,
D. R.; Meyer, K. G. J. Am. Chem. Soc. 2001, 123, 765. (d) Lam, H. W.;
Pattenden, G. Angew. Chem., Int. Ed. 2002, 41, 508. (e) Maleczka, R. E.,
Jr.; Terrell, L. R.; Geng, F.; Ward, J. S. Org. Lett. 2002, 4, 2841. (f) Ghosh,
A. K.; Liu, C. J. Am. Chem. Soc. 2003, 125, 2374. (g) Trost, B. M.;
Harrington, P. E. J. Am. Chem. Soc. 2004, 126, 5028. (h) Ghosh, A. K.;
Gong, G. J. Am. Chem. Soc. 2004, 126, 3704. (i) Colby, E. A.; O’Brien,
K. C.; Jamison, T. F. J. Am. Chem. Soc. 2004, 126, 998. (j) Trost, B. M.;
Papillon, J. P. N. J. Am. Chem. Soc. 2004, 126, 13618. (k) Trost, B. M.;
Chisholm, J. D.; Wrobleski, S. T.; Jung, M. J. Am. Chem. Soc. 2002, 124,
12420. (l) Ghosh, A. K.; Gong, G. J. Org. Chem. 2006, 71, 1085. (m)
Trost, B. M.; Papillon, J. P. N.; Nussbaumer, T. J. Am. Chem. Soc. 2005,
127, 17921. (n) Trost, B. M.; Harrington, P. E.; Chisholm, J. D.; Wrobleski,
S. T. J. Am. Chem. Soc. 2005, 127, 13598. (o) Colby, E. A.; Jamison, T.
F. Org. Biomol. Chem. 2005, 3, 2675. (p) Colby, E. A.; O’Brien, K. C.;
Jamison, T. F. J. Am. Chem. Soc. 2005, 127, 4297.
(11) Preliminary communication: Lepage, O.; Kattnig, E.; Fu¨rstner, A. J. Am.
Chem. Soc. 2004, 126, 15970.
(12) For a discussion see: Fu¨rstner, A. Synlett 1999, 1523.
9
J. AM. CHEM. SOC. VOL. 128, NO. 28, 2006 9195