ꢀ
Krzyminski et al.
JOCArticle
substances.2a,c Acridinium salts exhibit a higher chemilumines-
cence quantum yield in aqueous media relative to luminol
derivatives and, unlike the latter systems, do not require a
catalyst to cause the emission of light.1,5 For these reasons,
numerous commercially available chemiluminescent labels
contain a 9-(phenoxycarbonyl)acridinium fragment substi-
tuted at the benzene moiety.5e,9,10 A disadvantage of the use
of these compounds, however, is their tendency to form non-
chemiluminescing “pseudobases” in aqueous basic or neutral
media.1,11,12 In order to minimize this effect, derivatives sub-
stituted at the benzene ring have been investigated under a wide
range of analytical conditions.10 There are also other acridi-
nium derivatives substituted at C(9) with carboxamide,13
cyanide,2b and hydroxamic acid or other groups,5c whose
chemiluminogenic features have been investigated in the con-
text of possible analytical applications.
The stability of acridinium cations functionalized at C(9)
and their susceptibility to oxidation depend primarily on the
structure of the fragment removed during the formation of
electronically excited, N(10)-substituted, 9-acridinones.1,10,13
The easily removable fragments give rise to flash-type CL,
during which the efficiency of light emission is high.10c,d,12 It has
been found that CL efficiency is generally related to the pKa
values of the phenols that are the precursors of N(10)-sub-
stituted 9-(phenoxycarbonyl)acridinium cations.1,13 If these
cations are derived from phenols exhibiting a pKa < 11.97
(pKa of HOOH), they may well turn out to be efficient
chemiluminogens.3,13,14 Unfortunately, however, a higher CL
efficiency is usually accompanied by a greater susceptibility to
hydrolysis and lower stability of the compounds in aqueous
systems. On the other hand, the substituents on the acridinium
nucleus affect the wavelength of the emitted light and alter the
susceptibility of entities to hydrolysis.14,15
The mechanism of oxidation of N(10)-substituted 9-(phe-
noxycarbonyl)acridinium cations with hydrogen peroxide in
alkaline media has been discussed by several authors;1,3,5c,13
we examined it at the semiempirical level of theory.4 Com-
putations have shown that the commonly suggested reaction
pathway, involving the formation of dioxethanone as inter-
mediate and the elimination of CO2, is not the most probable
means by which light is generated. The results of our studies
suggest that light-emitting molecules of 10-methyl-9-acridi-
none are formed as a result of the elimination of the phenyl
carbonate anion, and not CO2 as other authors have sug-
gested,1,5c from the cyclic intermediate that is formed after
the initial addition of OOH- to the 10-methyl-9-(pheno-
xycarbonyl)acridinium cation and the subsequent abstrac-
tion of a proton by OH-. Analysis of the oxidation of the
9-cyano-10-methylacridinium cation revealed a similar mech-
anism of CL generation.16
This work focuses on experimental and computational
investigations of the chemiluminescent features of 10-methyl-
9-(phenoxycarbonyl)acridinium cations substituted with
various alkyl groups in the phenyl fragment (MPCAþ)
(Chart 1). By undertaking these investigations we hoped
not only to extend our knowledge of practically important
chemiluminogens but also to gain an opportunity to study
the relations between the physicochemical properties and
structure and the chemiluminogenic ability and composition
of the reacting systems, which would form a framework for
the rational design and analytical use of these acridinium
derivatives.
Results and Discussion
(5) (a) Weeks, I.; Beheshti, I.; McCapra, F.; Campbell, A. K.; Woodhead,
J. S. Clin. Chem. 1983, 29, 1474–1479. (b) Weeks, I.; Sturgess, M.; Brown,
R. C.; Woodhead, J. S. Methods Enzymol. 1986, 133, 366–387. (c) Dodeigne,
C.; Thunus, L.; Lejeune, R. Talanta 2000, 51, 415–439. (d) Kricka, L. J. Anal.
Chim. Acta 2003, 500, 279–286. (e) Sub-Attomole Labeling Kit, http://www.
assaydesigns.com/objects/catalog/product/extras/915-049.pdf (accessed Oct
1, 2010).
(6) (a) Campos, L. M.; Cavalcanti, C. L.; Lima-Filho, J. L.; Carvalho,
L. B.; Beltrao, E. I. Biomarkers 2006, 11, 480–484. (b) Scorilas, A.; Agiamarnioti,
K.; Papadopoulos, K. Clin. Chim. Acta 2005, 357, 159–167.
(7) (a) Garcia-Campana, A. M.; Baeyens, W. R. G.; Cuadros-Rodriguez,
L.; Ales Barrero, F.; Bosque-Sendra, J. M.; Gamiz-Gracia, L. Curr. Org.
Chem. 2002, 6, 1–20. (b) Garcia-Campana, A. M.; Gamiz-Gracia, L.;
Baeyens, W. R. G.; Bariero, F. A. J. Chromatogr. B 2003, 793, 49–74.
(c) Atanassova, D.; Kefalas, P.; Psillakis, E. Environ. Int. 2005, 31, 275–
280.
Characteristics of the Compounds. Electronic absorption
and emission,17 IR,18 NMR,19 thermoanalytical,20 X-ray,21,22
and computational4,17-20,22 methods were employed to de-
termine various features of the compounds investigated.
Some other properties are reported below.
There appear to be conspicuous differences between MPCAþ
retention times (Rt) (Table 1S, Supporting Information).
Cations containing voluminous alkyl substituents or that are
(16) Wroblewska, A.; Huta, O. M.; Midyanyj, S. V.; Patsay, I. O.; Rak, J.;
Blazejowski, J. J. Org. Chem. 2004, 69, 1607–1614.
(8) King, D. W.; Cooper, W. J.; Rusak, S. A.; Peake, B. M.; Kiddle, J. J.;
O’Sullivan, D. W.; Melamed, M. L.; Morgan, C. R.; Theberge, S. M. Anal.
Chem. 2007, 79, 4169–4176.
(9) (a) Fan, A.; Cao, Z.; Li, H.; Kai, M.; Lu, J. Anal. Sci. 2009, 25, 587–
597. (b) Brown, R. C.; Li, Z.; Rutter, A. J.; Mu, X.; Weeks, O. H.; Smith, K.;
Weeks, I. Org. Biomol. Chem. 2009, 7, 386–394.
(10) (a) Sato, N. Tetrahedron Lett. 1996, 37, 8519–8522. (b) Razavi, Z.;
McCapra, F. Luminescence 2000, 15, 239-244, 245–249. (c) Smith, K.; Li, Z.;
Yang, J.-J.; Weeks, I.; Woodhead, J. S. J. Photochem. Photobiol. A: Chem.
2000, 132, 181–191. (d) Smith, K.; Yang, J.-J.; Li, Z.; Weeks, I.; Woodhead,
J. S. J. Photochem. Photobiol. A: Chem. 2009, 203, 72–79.
(11) Hammond, P. W.; Wiese, W. A.; Waltrop, A. A.; Nelson, N. C.;
Arnold, L. J. J. Biolumin. Chemilumin. 1991, 6, 35–43.
(17) Krzyminski, K.; Roshal, A. D.; Niziolek, A. Spectrochim. Acta, Part
A 2008, 70, 394–402.
(18) Zadykowicz, B.; Ozog, A.; Krzyminski, K. Spectrochim. Acta, Part A
2010, 75, 1546–1551.
(19) Krzyminski, K.; Malecha, P.; Zadykowicz, B.; Wroblewska, A.;
Blazejowski, J. Spectrochim. Acta, Part A 2011, 78, 401-409.
(20) Krzyminski, K.;Malecha, P.;Storoniak,P.;Zadykowicz, B.;Blazejowski,
J. J. Therm. Anal. Cal. 2010, 100, 207–214.
(21) (a) Sikorski, A.; Krzyminski, K.; Konitz, A.; Blazejowski, J. Acta
Crystallogr., Sect. C 2005, 61, o50–o52. (b) Sikorski, A.; Krzyminski, K.;
Bialonska, A.; Lis, T.; Blazejowski, J. Acta Crystallogr., Sect. E 2006, 62,
o555–o558. (c) Sikorski, A.; Krzyminski, K.; Bialonska, A.; Lis, T.;
Blazejowski, J. Acta Crystallogr., Sect. E 2006, 62, o822–o824. (d) Sikorski,
A.; Krzyminski, K.; Malecha, P.; Lis, T.; Blazejowski, J. Acta Crystallogr.,
Sect. E 2007, 63, o4484–o4485. (e) Trzybinski, D.; Krzyminski, K.; Sikorski,
A.; Malecha, P.; Blazejowski, J. Acta Crystallogr., Sect. E 2010, 66, o826–
o827. (f) Trzybinski, D.; Krzyminski, K.; Sikorski, A.; Blazejowski, J. Acta
Crystallogr., Sect. E 2010, 66, o906–o907. (g) Trzybinski, D.; Krzyminski,
K.; Sikorski, A.; Blazejowski, J. Acta Crystallogr., Sect. E 2010, 66, o1311–
o1312. (h) Trzybinski, D.; Krzyminski, K.; Blazejowski, J. Acta Crystallogr.,
(12) Kaltenbach, M. S.; Arnold, M. A. Microchim. Acta 1992, 108, 205–
219.
(13) Adamczyk, M.; Mattingly, P. G. In Luminescence Biotechnology
Instruments and Applications (Chemiluminescent N-Sulfonylacridinum 9-
Carboxamides and Their Application in Clinical Assays); Van Dyke, K.,
Van Dyke, C., Woodfork, K., Eds.; CRC Press: Boca Raton, 2002; pp
77-103.
(14) Krzyminski, K.; Roshal, A. D.; Zadykowicz, B.; Bialk-Bielinska, A.;
Sieradzan, A. J. Phys. Chem. A 2010, 114, 10550–10562.
(15) Natrajan, A.; Sharpe, D.; Costello, J.; Jiang, Q. Anal. Biochem. 2010,
406, 204–213.
Sect. E 2010, 66, o2773–o2774. (i) Trzybinski, D.; Krzyminski, K.;
Blazejowski, J. Acta Crystallogr., Sect. E 2010, 66, o2929–o2930.
(22) Niziolek, A.; Zadykowicz, B.; Trzybinski, D.;Sikorski, A.; Krzyminski,
K.; Blazejowski, J. J. Mol. Struct. 2009, 920, 231–237.
J. Org. Chem. Vol. 76, No. 4, 2011 1073