4952 Journal of Medicinal Chemistry, 2006, Vol. 49, No. 16
BiaVa et al.
(16) Mckinney, J. D.; Jacobs, W. R. J.; Bloom, B. R. Persisting problems
in tuberculosis. In Emerging infections; Krause, R. M., Ed.; Academic
Press: New York, 1998; pp 51-146.
(17) Duncan, K.; Sacchettini, J. C. Approaches to tuberculosis drug
development. In Molecular Genetics of Mycobacteria; Hatfull, G.
F., Jacobs, W. R. J., Eds.; ASM Press: Washington, DC, 2000; pp
297-307.
(18) Global Alliance for Tuberculosis Drug Development. Scientific
blueprint for tuberculosis drug development. Tuberculosis 2001, 81
(Suppl. 1), 1-52.
(19) O’Brien, R. J.; Nunn, P. P. The need for new drugs against
tuberculosis. Obstacles, opportunities, and next steps. Am. J. Respir.
Crit. Care Med. 2001, 1635, 1055-1058.
(20) Sahbazian, B.; Weis, S. E. Treatment of active tuberculosis: Chal-
lenges and prospects. Clin. Chest Med. 2005, 26, 273-282.
(21) Deidda, D.; Lampis, G.; Fioravanti, R.; Biava, M.; Porretta, G. C.;
Zanetti, S.; Pompei, R. Bactericidal activity of the pyrrole deriva-
tive BM 212 on multidrug-resistant and intramacrophage Mycobac-
terium tuberculosis. Antimicrobial Agents Chemother. 1998, 42,
3035-3037.
(22) Biava, M.; Fioravanti, R.; Porretta, G. C.; Sleiter, G.; Ettorre, A.;
Deidda, D.; Lampis, G.; Pompei, R. Synthesis and microbiological
activities of pyrrole derivative analogues of BM 212, a potent
antitubercular agent. Med. Chem. Res. 1999, 9, 19-34.
(23) Biava, M.; Fioravanti, R.; Porretta, G. C.; Deidda, D.; Maullu, C.;
Pompei, R. New pyrrole derivatives as antimycobacterial agent
analogues of BM 212. Bioorg. Med. Chem. Lett. 1999, 9, 2983-
2988.
(24) Biava, M. BM 212 and its derivatives as a new class of antimyco-
bacterial active agents. Curr. Med. Chem. 2002, 9, 1859-1869.
(25) Barbachyn, M. R.; Hutchinson, D. K.; Brickner, S. J.; Cynamon, M.
H.; Kilburn, J. O.; Klemens, S. P.; Glickman, S. E.; Grega, K. C.;
Hendges, S. K.; Toops, D. S.; Ford, C. W.; Zurenko, G. E.
Identification of a novel oxazolidinone (U-100480) with potent
antimycobacterial activity. J. Med. Chem. 1996, 39, 680-685.
(26) Manetti, F.; Corelli, F.; Biava, M.; Fioravanti, R.; Porretta, G. C.;
Botta, M. Building a pharmacophore model for a novel class of
antitubercular compounds. Farmaco 2000, 55, 484-491.
(27) Biava, M.; Porretta, G. C.; Deidda, D.; Pompei, R.; Tafi, A.; Manetti,
F. Importance of thiomorpholine introduction in new pyrrole deriva-
tives as antimycobacterial agent analogues of BM 212. Bioorg. Med.
Chem. 2003, 11, 515-520.
(FS) for 24 h at 37 °C in a 5% CO2 incubator. After 24 h of culture,
the medium was changed, and a new medium containing decreasing
doses of the substances under study was added.
After 5 days, cells were trypsinized and counted in a Neubauer
chamber under a light microscope. All the tests were done in
triplicate. The maximal 50% nontoxic dose (MNTD50) was defined
as the drug concentration that decreased cell multiplication less than
50% with respect to the control.
Computational Methods. All calculations and graphic manipu-
lations were performed on a SGI Origin 300 server and SGI Octane2
workstations by means of the Catalyst 4.10 software package.35
All the compounds used in this study were built using the 2-D-
3-D sketcher of Catalyst. A representative family of conformations
was generated for each molecule using the poling algorithm and
the best quality conformational analysis method. Conformational
diversity was emphasized by selection of the conformers that fell
within a 20 kcal/mol range above the lowest energy conformation
found.
The Compare/Fit command within Catalyst was used to align
the studied compounds onto the pharmacophoric model. Particularly,
the Best Fit option was selected, which manipulated the conformers
of each compound to find, when possible, different mapping modes
of the ligand within the model.
The QSAR+ module of Cerius2 was used to calculate Alog P98
values of the studied compounds. Such a descriptor is an imple-
mentation of the atom type-based Alog P method using the latest
published set of parameters.36
Acknowledgment. Financial support from the Italian Min-
istero dell’Istruzione, dell’Universita` e della Ricerca (PRIN
2005037820) is gratefully acknowledged.
Supporting Information Available: Experimental details (de-
tails of synthesis and elemental analysis data of compounds). This
material is available free of charge via the Internet at http://
pubs.acs.org.
(28) Biava, M.; Porretta, G. C.; Deidda, D.; Pompei, R.; Tafi, A.; Manetti,
F. Antimycobacterial compounds. New pyrrole derivatives of BM
212. Bioorg. Med. Chem. 2004, 12, 1453-1458.
(29) Biava, M.; Porretta, G. C.; Poce, G.; Deidda, D.; Pompei, R.; Tafi,
A.; Manetti, F. Antimycobacterial compounds. Optimization of the
BM 212 structure, the lead compound for a new pyrrole derivative
class. Bioorg. Med. Chem. 2005, 13, 1221-1230.
(30) Biava, M.; Fioravanti, R.; Porretta, G. C.; Deidda, D.; Lampis, G.;
Pompei, R.; Tafi, A.; Manetti, F. New derivatives of toluidine:
synthesis, antitubercular activity, and pharmacophore hypothesis.
Med. Chem. Res. 2002, 11, 50-66.
(31) In the text, we use the following notation. The terms thiomorpho-
line derivatives and N-methylpiperazine derivatives refer to com-
pounds bearing a (thiomorpholin-4-yl)methyl and a (4-methylpiper-
azin-1-yl)methyl moiety at position 3 of the pyrrole ring, respec-
tively.
(32) Cerius2, version 4.8.1 is distributed by Accelrys, Inc., Scranton Rd.,
San Diego, CA.
(33) Ragno, R.; Marshall, G. R.; Di Santo, R.; Costi, R.; Massa, S.;
Pompei, R.; Artico, M. Antimycobacterial pyrroles: synthesis, anti-
Mycobacterium tuberculosis activity, and QSAR studies. Bioorg.
Med. Chem. 2000, 8, 1423-1432.
(34) Hawkins, J. E.; Wallace, R. J., Jr.; Brown, B. A. Antibacterial
susceptibility test: Mycobacteria. In Manual of Clinical Microbiol-
ogy, 4th ed.; Balows, A., Hausler, W. J., Jr., Hermann, K. L., Isenberg,
H. D., Shadomy, H. J., Eds.; American Society for Microbiology:
Washington, DC, 1991; pp 1138-1152.
(35) Catalyst, version 4.10 is distributed by Accelrys, Inc., Scranton Rd.,
San Diego, CA.
(36) Ghose, A. K.; Viswanadhan, V. N.; Wendoloski, J. J. Prediction of
hydrophobic (lipophilic) properties of small organic molecules using
fragmental methods: Analysis of ALOGP and CLOGP methods. J.
Phys. Chem. 1998, 102, 3762-3772.
(37) Biava, M.; Manetti, F.; Deidda, D.; Pompei, R.; Botta, M.; Porretta,
G. C. Derivatives of 1-{[1,5-bis(4-chlorophenyl)-2-methyl-1H-3-
pyrrolyl]methyl}-4-methylpip erazine, synthesis process, and uses
thereof. International Patent Application PCT/IT2006/000131, March
3, 2006.
References
(1) Ryan, F. The Forgotten Plague. How the battle against tuberculosis
was wonsand lost; Little, Brown: Boston, MA, 1993.
(2) Maher, D.; Raviglione, M. Global epidemiology of tuberculosis. Clin.
Chest Med. 2005, 26, 167-182.
(3) World Health Organization. Global tuberculosis control: SurVeil-
lance, planning, financing; WHO Report 2004: Geneva, Switzerland,
2004.
(4) Cegielski, J. P.; Chin, D. P.; Espinal, M. A.; Frieden, T. R.; Rodriquez
Cruz, R.; Talbot, E. A.; Weil, D. E.; Zaleskis, R.; Raviglione, M. C.
The global tuberculosis situation. Progress and problems in the 20th
century, prospects for the 21st century. Infect. Dis. Clin. North Am.
2002, 161, 1-58.
(5) World Health Organization. The World Health Organization Global
Tuberculosis Program, 2003. Further info at the web site: http://
(6) Espinal, M. A. The global situation of MDR-TB. Tuberculosis 2003,
83, 44-51.
(7) Frieden, T. R.; Munsiff, S. S. The DOTS strategy for controlling the
global tuberculosis epidemic. Clin. Chest Med. 2005, 26, 197-205.
(8) World Health Organization. 47th World Health Assembly: ProVi-
sional Agenda Item 19. Tuberculosis-Progress Report by the Director
General; Document WHA47/1994/A47/12: Geneva, Switzerland,
1994.
(9) Parrish, N. M.; Dick, J. D.; Bishai, W. R. Mechanisms of latency in
Mycobacterium tuberculosis. Trends Microbiol. 1998, 6, 107-112.
(10) Brodie, D.; Schluger, N. W. The Diagnosis of tuberculosis. Clin.
Chest Med. 2005, 26, 247-271.
(11) Girling, D. J. Clinical aspects of mycobacterial disease. In The Biology
of Mycobacteria, Vol. 3; Ratledge, C., Stanford, J., Grange, J. M.,
Eds.; Academic Press: London, 1989; pp 285-323.
(12) Dooley, K. E.; Sterling, T. R. Treatment of latent tuberculosis infec-
tion: Challenges and prospects. Clin. Chest Med. 2005, 26, 313-326.
(13) Zumla, A.; Grange, J. Infection and disease caused by environmental
mycobacteria. Curr. Opin. Pulm. Med. 2002, 8, 166-172.
(14) Falkinham, J. O. Epidemiology of infection by nontuberculous
mycobacteria. Clin. Microbiol. ReV. 1996, 9, 177-215.
(15) Heifets, L. Susceptibility testing of Mycobacterium aVium complex
isolates. Antimicrobial Agents Chemother. 1996, 40, 1759-1767.
JM0602662