ORGANIC
LETTERS
2006
Vol. 8, No. 15
3243-3246
Investigation of a Convergent Route to
Purpuromycin: Benzofuran Formation
vs Spiroketalization
Stephen P. Waters, Michael W. Fennie, and Marisa C. Kozlowski*
Department of Chemistry, Roy and Diana Vagelos Laboratories, UniVersity of
PennsylVania, Philadelphia, PennsylVania 19104-6323
Received May 5, 2006
ABSTRACT
A mild and efficient [3+2] nitrile oxide/olefin cycloaddition allows coupling of the highly functionalized naphthalene and isocoumarin hemispheres
of purpuromycin. A rationale of the inability of advanced keto alcohols to spirocyclize is presented based upon a systematic examination of
the electronic factors present in these systems and suggests that the biosynthesis of purpuromycin does not proceed through open-chain
intermediates.
Purpuromycin (1),1 a member of the rubromycin family of
natural products that also includes heliquinomycin and the
griseorhodins,2-4 is a polyketide consisting of highly func-
tionalized naphthazarin and isocoumarin ring systems linked
through a bisbenzannelated 5,6-spiroketal (above). Our
particular interest in purpuromycin, isolated from the soil
bacterium A. ianthinogenes, followed reports of its potent
antimicrobial5 and human telomerase inhibitory properties.6
Moreover, its unique ability to bind with high affinity to all
tRNAs, thereby inhibiting their acceptor capacity and
disrupting further protein synthesis, represents a novel mode
of action.7
While a formidable array of oxidation is present within
the hexacyclic ring system, the most striking feature is the
highly unusual 5,6-bisbenzannelated spiroketal core. Indeed,
the only reported synthesis of a natural product featuring
this moiety is that of heliquinomycin aglycon by Danishefsky
and co-workers, which was realized through coupling of a
lithiated naphthofuran with an arylacetaldehyde and Mit-
sunobu-like ring closure to form the spiroketal.8 In addition,
syntheses of simple 5,6-bisbenzannulated spiroketals have
been disclosed by both de Koning,9 and Brimble.10
(1) (a) Coronelli, C.; Pagani, H.; Bardone, M. R.; Lancini, G. C. J.
Antibiot. 1974, 27, 161. (b) Bardone, M. R.; Martinelli, E.; Zerilli, E. F.;
Coronelli, C. Tetrahedron 1974, 30, 2747.
(2) Brockmann, H.; Zeeck, A. Chem. Ber. 1970, 103, 1709.
(3) (a) Chino, M.; Nishikawa, K.; Umekita, M.; Hayashi, C.; Yamazaki,
T.; Tsuchida, T.; Sawa, R.; Hamada M.; Takeuchi, T. J. Antibiot. 1996,
49, 752. (b) Chino, M.; Nishikawa, K.; Tsuchida, T.; Sawa, R.; Nakamura,
H.; Nakamura, K. T.; Muraoka, M. Y.; Ikeda, D.; Naganawa, H.; Sawa,
T.; Takeuchi, T. J. Antibiot. 1997, 50, 143.
(4) (a) Yang, J.; Fan, S.; Pei, H.; Zhu, B.; Xu, W.; Naganawa, H.;
Hamada, M.; Takeuchi, T. J. Antibiot. 1991, 44, 1277. (b) Panzone, G.;
Trani, A.; Ferrari, P.; Gastaldo, L.; Colombo, L. J. Antibiot. 1997, 50, 665.
(5) (a) Trani, A.; Dallanoce, C.; Ferarri, P.; Goldstein, B. P.; Ripamonti,
F.; Ciabatti, R. Il Farmaco 1996, 51, 503. (b) Trani, A.; Kettenring, J.;
Ripamonti, F.; Goldstein, B.; Ciabatti, R. Il Farmaco 1993, 48, 637.
(6) Ueno, T.; Takahashi, H.; Oda, M.; Mizunuma, M.; Yokoyama, A.;
Goto, Y.; Mizushina, Y.; Sakaguchi, K.; Hayashi, H. Biochemistry 2000,
39, 5995.
(7) Krillov, S.; Vitali, L. A.; Goldstein, B. P.; Monti, F.; Semenkov, Y.;
Makhno, V.; Ripa, S.; Pon, C. L.; Gualerzi, C. O. RNA 1997, 3, 905.
(8) (a) Qin, D.; Ren, R. X.; Siu, T.; Zheng, C.; Danishefsky, S. J. Angew.
Chem., Int. Ed. 2001, 40, 4709. (b) Siu, T.; Qin, D.; Danishefsky, S. J.
Angew. Chem., Int. Ed. 2001, 40, 4713.
(9) Capecchi, T.; de Koning, C. B.; Michael, J. P. J. Chem. Soc., Perkin
Trans. 1 2000, 2681.
(10) Tsang, K. T.; Brimble, M. A.; Bremner, J. B. Org. Lett. 2003, 5,
4425.
10.1021/ol061112j CCC: $33.50
© 2006 American Chemical Society
Published on Web 06/30/2006