H. Ohno et al. / Tetrahedron Letters 47 (2006) 5747–5750
5749
OMe
Pd2(dba)3 (20 mol % to 2)
(S)-BINAP (60 mol % to 2)
NaOt-Bu (150 mol % to 2)
CN
OMe
N
4
5
OMPM
O 1'
CN
OMPM
O 1"
6'
N
OMPM
O
4"
4'
7
+
2
3
N
MeO
MPMO
+
O
toluene
80 °C, 6 h
N
2
2'
N
N
(250 mol % to 2)
MPMO
2'
SEM
N
MPMO1'
H
MPMO
MPMO
N
SEM
H
13b (55% from 9)
13a (14% from 9)
BF3•OEt2
dapiramicin B (1)
CH2Cl2, 0
92%
°C
Scheme 3.
2880; (c) Suzuki, T.; Chida, N. Chem. Lett. 2003, 32, 190–
191.
6. Gangjee, A.; Vidwans, A.; Elzein, E.; McGuire, J. J.;
Queener, S. F.; Kisliuk, R. L. J. Med. Chem. 2001, 44,
1993–2003.
as N-SEM protecting groups to furnish dapiramicin B
(1) in 92% yield after purification with the reversed-
phase and gel filtration chromatographies. The physical
properties as well as spectral data (1H NMR and IR) of
20
synthetic specimen {mp 241–244 °C; ½aꢀD ꢁ36.3 (c 0.12,
}
´
7. Peto, C.; Batta, G.; Gyo¨rgydeak, Z.; Sztaricskai, F.
50% aqueous AcOH)} showed good accordance with
Liebigs Ann. Chem. 1991, 505–507.
those reported for natural dapiramicin B {mp 241–
8. All new compounds described in this paper were charac-
terized by 300 MHz 1H NMR, 75 MHz 13C NMR, IR and
mass spectrometric and/or elemental analyses.
20
243 °C; ½aꢀD ꢁ37.6 (c 1.0, 50% aqueous AcOH)}.2a
In summary, the first total synthesis of dapiramicin B (1)
has been accomplished. This synthesis fully confirmed
the proposed structure of the natural product and re-
vealed that the Pd-catalyzed N-arylation methodology
is highly effective for construction of N-glycoside struc-
tures in which an exocyclic nitrogen of the heterocycle is
connected to the sugar. Further study for the stereo-
selective synthesis of dapiramicin A based on the same
methodology is underway.
9. Furstner, A.; Radkowski, K.; Grabowski, J.; Wirtz, C.;
¨
Mynott, R. J. Org. Chem. 2000, 65, 8758–8762.
23
10. Data of compound 2: ½aꢀD +24.8 (c 1.00, CHCl3);
mmax (neat) 3400 and 3330 cmꢁ1 1H NMR (CDCl3,
;
300 MHz): d 7.31–7.18 (m, 12H), 6.88–6.72 (m, 12H),
5.01 (d, 1H, J = 10.8 Hz), 4.79 and 4.77 (2d, each 1H,
J = 10.5 Hz), 4.73 (d, 1H, J = 10.8 Hz), 4.69 (d, 2H,
J = 10.5 Hz), 4.65 and 4.63 (2d, each 1H, J = 10.8 Hz),
4.55 (d, 1H, J = 12.0 Hz), 4.43 (s, 2H), 4.32 (d, 1H,
J = 12.0 Hz), 4.31 (d, 1H, J = 8.5 Hz), 4.06 (d, 1H,
J = 8.4 Hz), 3.95 (dd, 1H, J = 9.0 and 9.0 Hz), 3.80–3.77
(m, 1H), 3.80 (s, 6H), 3.78, 3.78, 3.77 and 3.73 (4s, each
3H), 3.71 (dd, 1H, J = 11.4 and 0.9 Hz), 3.59 (dd, 1H,
J = 10.8 and 1.5 Hz), 3.57 (dd, 1H, J = 9.0 and 9.0 Hz),
3.54 (dd, 1H, J = 11.4 and 5.1 Hz), 3.48 (s, 3H), 3.34 (ddd,
1H, J = 9.0, 3.0 and 1.5 Hz), 3.30–3.16 (m, 4H) and 3.12
(dd, 1H, J = 9.0 and 8.4 Hz); 13C NMR (CDCl3,
300 MHz): d 159.09, 159.06, 159.00, 158.84, 158.74,
131.47, 130.88, 130.70, 130.65, 130.62, 129.80, 129.78,
129.75, 129.63, 129.40, 129.33, 128.92, 113.74, 113.67,
113.60, 113.56, 113.33, 102.27, 86.18, 84.51, 83.58, 82.30,
82.21, 79.88, 76.58, 75.80, 75.13, 75.04, 74.66, 74.52, 74.40,
72.94, 72.85, 68.74, 67.81, 60.51, 55.21, 55.19, 55.17, 55.11
and 55.06; MS (FAB) m/z 1076 (M+H)+. Data of
References and notes
1. Shomura, T.; Nishizawa, N.; Iwata, M.; Yoshida, J.; Ito,
M.; Amano, S.; Koyama, M.; Kojima, M.; Inouye, S.
J. Antibiot. 1983, 36, 1300–1304.
2. (a) Nishizawa, N.; Kondo, Y.; Koyama, M.; Omoto, S.;
Iwata, M.; Tsuruoka, T.; Inouye, S. J. Antibiot. 1984, 37,
1–5; (b) Seto, H.; Otake, N.; Koyama, M.; Ogino, H.;
Kodama, Y.; Nishizawa, N.; Tsuruoka, T.; Inouye, S.
Tetrahedron Lett. 1983, 24, 495–498.
3. (a) Muci, A. R.; Buchwald, S. L. In Topics in Current
Chemistry; Miyaura, N., Ed.; Springer: Berlin, 2001; Vol.
219, pp 131–209; Hartwig, J. F. In Modern Arene
Chemistry; Astruc, C., Ed.; Wiley-VCH: Weinheim,
2002; pp 107–168; Wolfe, J. P.; Wagaw, S.; Marcoux,
J.-F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805–
818; (b) Wolfe, J. P.; Tomori, H.; Sadighi, J. P.; Yin, J.;
Buchwald, S. L. J. Org. Chem. 2000, 65, 1158–1174; (c)
Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J.
Am. Chem. Soc. 2003, 125, 13978–13980; (d) Huang, X.;
Anderson, K. W.; Zim, D.; Jiang, L.; Klapars, A.;
Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 6653–6655;
(e) Wolfe, J. P.; Buchwald, S. L. J. Org. Chem. 2000, 65,
1144–1157; (f) Wolfe, J. P.; Wagaw, S.; Buchwald, S. L.
J. Am. Chem. Soc. 1996, 118, 7215–7216.
compound 3: mp 113–116 °C; mmax (neat) 2235 cmꢁ1 1H
;
NMR (CDCl3, 300 MHz): d 7.67 (s, 1H), 5.57 (s, 2H), 4.17
(s, 3H), 3.54 (t, 2H, J = 8.1 Hz), 0.91 (t, 2H, J = 8.1 Hz)
and ꢁ0.05 (s, 9H); 13C NMR (CDCl3, 75 MHz): d 162.92,
152.29, 145.35, 133.44, 113.68, 103.58, 85.98, 73.74, 67.44,
55.25, 17.60 and ꢁ1.53; MS (EI) m/z 384 (M+2, 13%), 382
(M+, 13), 341 (29), 339 (30), 326 (73), 324 (72), 311 (23),
309 (27), 268 (62), 266 (62), 245 (23), 103 (26), 73 (100);
HRMS (EI) m/z 384.0441, calcd for C14H1981BrN4O2Si
23
(M+); 384.0440. Data of compound 13a: ½aꢀD +56.6 (c 0.80,
1
CHCl3); mmax (neat) 3440, 3370 and 2210 cmꢁ1; H NMR
(CDCl3, 300 MHz): d 7.42 (s, 1H), 7.33–7.08 (m, 12H),
6.86–6.66 (m, 12H), 5.80 (d, 1H, exchangeable with D2O,
J = 6.0 Hz), 5.77 (dd, 1H, J = 6.0 and 4.8 Hz), 5.48 and
5.38 (2d, each 1H, J = 10.7 Hz), 4.98 (d, 1H, J = 11.4 Hz),
4.72 (d, 1H, J = 10.5 Hz), 4.70 (d, 1H, J = 10.8 Hz), 4.66
(d, 1H, J = 10.5 Hz), 4.65 (d, 1H, J = 11.4 Hz), 4.60 (d,
1H, J = 11.3 Hz), 4.59 (d, 1H, J = 10.8 Hz), 4.54 (d, 1H,
J = 11.7 Hz), 4.43 (s, 2H), 4.43 (d, 1H, J = 11.3 Hz), 4.29
(d, 1H, J = 6.9 Hz), 4.29 (d, 1H, J = 11.7 Hz), 4.05 (s,
4. Chida, N.; Suzuki, T.; Tanaka, S.; Yamada, I. Tetrahedron
Lett. 1999, 40, 2573–2576.
5. (a) Suzuki, T.; Tanaka, S.; Yamada, I.; Koashi, Y.;
Yamada, K.; Chida, N. Org. Lett. 2000, 2, 1137–1140; (b)
Suzuki, T.; Suzuki, S. T.; Yamada, I.; Koashi, Y.;
Yamada, K.; Chida, N. J. Org. Chem. 2002, 67, 2874–