LETTER
Dienophiles in Inverse Hetero-Diels–Alder Reactions
1427
JAB = 12.8 Hz, J2ax¢-3¢ = J2ax¢-1¢ = 11.3 Hz, 1 H, H2ax¢), 2.36
Acknowledgment
(ddt, JAB = 12.8 Hz, J2eq¢-3¢ = 6.3 Hz, J2eq¢-1¢ = J2eq¢-4¢ = 1.8 Hz,
1 H, H2eq¢), 3.38 (d, JAB = 10.0 Hz, 1 H, H7b), 3.79 (s, 3 H,
H7¢), 3.80–4.00 (m, 2 H, H6b, H3¢), 4.17–4.80 (m, 4 H, H4, H5,
H6a, H7a), 4.38 (d, J2-1 = 3.5 Hz, 1 H, H2), 5.70 (d, J1-2 = 3.5
Hz, 1 H, H1), 6.20 (t, J4¢-3¢ = J4¢-2eq¢ = 1.6 Hz, 1 H, H4¢), 6.29
(dd, J1¢-2ax¢ = 11.3 Hz, J1¢-2eq¢ = 1.8 Hz, 1 H, H1¢), 7.18–7.41
(m, 5 H, H-arom.) ppm. 13C NMR (CDCl3): d = 25.1, 26.6,
26.8, 31.1 (CH3), 34.4 (C-2¢), 38.6 (C-3¢), 47.0 (C-7), 52.4
(C-7¢), 68.2 (C-6), 73.2 (C-5), 77.4 (C-4), 83.5 (C-3), 83.9
(C-2), 88.3 (C-1¢), 103.2 (C-1), 110.5, (CIV-iPrd), 114.4
(C-4¢), 114.9 (CIV-iPrd), 127.2 (C-o¢), 127.5 (C-p¢), 129.1
(C-m¢), 142.0 (C-n¢), 144,0 (C-5¢), 162.4 (C-6¢), 186.8 (C=S)
ppm. MS (IS): m/z = 548.5 [M + H]+.
We thank Teddy Chapin for his helpful contribution.
References and Notes
(1) Gaulon, C.; Dhal, R.; Chapin, T.; Maisonneuve, V.;
Dujardin, G. J. Org. Chem. 2004, 69, 952.
(2) Gaulon, C.; Dhal, R.; Chapin, T.; Dujardin, G. unpublished
results.
(3) (a) OZTs can readily be transformed into oxazolines using
Raney Ni® (see ref. 3b) and further hydrolysed. Up to 74%
of chemical transformation was attained on model
compounds. Current explorations in our laboratory indicate
possible removal of the anomeric OZT moiety through a
transglycosylation reaction which will be disclosed in due
time. (b) Gosselin, G.; Bergogne, M.-C.; de Rudder, J.; De
Clerq, E.; Imbach, J.-L. J. Med. Chem. 1986, 29, 203.
(4) (a) Girniene, J.; Apremont, G.; Tatibouët, A.; Sackus, A.;
Rollin, P. Tetrahedron 2004, 60, 2609; and references cited
therein. (b) Girniene, J.; Tatibouët, A.; Sackus, A.; Yang, J.;
Holman, G. D.; Rollin, P. Carbohydr. Res. 2003, 338, 711.
(5) (a) Velazquez, F.; Olivo, H. F. Curr. Org. Chem. 2002, 6, 1.
(b) Jalce, G.; Seck, M.; Franck, X.; Hocquemiller, R.;
Figadère, B. J. Org. Chem. 2004, 69, 3240. (c) Crimmins,
M. T.; McDougall, P. J. Org. Lett. 2003, 5, 591.
(6) Chéry, F.; Desroses, M.; Tatibouët, A.; De Lucchi, O.;
Rollin, P. Tetrahedron 2003, 59, 4563.
(7) Girniene, J.; Tardy, S.; Tatibouët, A.; Sackus, A.; Rollin, P.
Tetrahedron Lett. 2004, 45, 6443.
(8) Gaulon, C.; Gizecki, P.; Dhal, R.; Dujardin, G. Synlett 2002,
952.
(9) Tardy, S.; Tatibouët, A.; Rollin, P. unpublished results.
(10) Compound 8 endo I: [a]D20 +50 (c 1.0, CHCl3). 1H NMR
(CDCl3): d = 1.33, 1.36, 1.47 (3 s, 12 H, CH3), 1.85 (dt,
(11) Compound 8 endo II: [a]D20 –26 (c 0.5, CHCl3). 1H NMR
(CDCl3): d = 1.17, 1.37, 4.41, 1.62 (4 s, 12 H, CH3), 1.86 (dt,
JAB = 12.8 Hz, J2ax¢-3¢ = J2ax¢-1¢ = 11.3 Hz, 1 H, H2ax¢), 2.37
(ddt, JAB = 12.8 Hz, J2eq¢-3¢ = 6.5 Hz, J2eq¢-1¢ = J2eq¢-4¢ = 1.8 Hz,
1 H, H2eq¢), 3.69 (d, JAB = 10.3 Hz, 1 H, H7b), 3.82 (s, 3 H,
H7¢), 3.90–4.00 (m, 4 H, H3¢, H5, H7a, H6b), 4.09 (dd, JAB = 7.3
Hz, J6a-5 = 2.8 Hz, 1 H, H6a), 4.17 (d, J4-5 = 8.5 Hz, 1 H, H4),
4.59 (d, J2-1 = 3.5 Hz, 1 H, H2), 5.71 (d, J1-2 = 3.5 Hz, 1 H,
H1), 6.21 (t, J4¢-3¢ = J4¢-2eq¢ = 1.6 Hz, 1 H, H4¢), 6.32 (dd,
J
1¢-2ax¢ = 11.3 Hz, J1¢-2eq¢ = 1.8 Hz, 1 H, H1¢), 7.18–7.40 (m,
5 H, H-arom.) ppm. 13C NMR (CDCl3): d = 25.4, 26.6, 27.0,
31.1 (CH3), 33.7 (C-2¢), 38.6 (C-3¢), 46.6 (C-7), 52.5 (C-7¢),
68.6 (C-6), 73.9 (C-5), 77.4 (C-4), 84.0 (C-2), 84.2 (C-3),
88.3 (C-1¢), 103.2 (C-1), 110.6, (CIV-iPrd), 114.8 (C-4¢,
CIV-iPrd), 127.2 (C-o¢), 127.5 (C-p¢), 129.1 (C-m¢), 142.0
(C-n¢), 143.8 (C-5¢), 162.4 (C-6¢), 186.2 (C=S) ppm. MS
(IS): m/z = 548.5 [M + H]+.
(12) Hughes, K. D.; Hguyen, T.-L. N.; Dyckman, D.; Dulay, D.;
Boyko, W. J.; Giuliano, R. M. Tetrahedron: Asymmetry
2005, 16, 273.
Synlett 2006, No. 9, 1425–1427 © Thieme Stuttgart · New York