2190
J. G. Catalano et al. / Bioorg. Med. Chem. Lett. 20 (2010) 2186–2190
5. Crump, M. P.; Gong, J. H.; Loetscher, P.; Rajarathnam, K.; Amara, A.; Arenzana-
Seisdedos, F.; Virelizier, J. L.; Baggiolini, M.; Sykes, B. D.; Clark-Lewis, I. EMBO J.
1997, 16, 6996.
6. Ichiyama, K.; Yokoyama-Kumakura, S.; Tanaka, Y.; Tanaka, R.; Hirose, K.;
Bannai, K.; Edamatsu, T.; Yanaka, M.; Niitani, Y.; Miyano-Kurosaki, N.; Takaku,
H.; Koyanagi, Y.; Yamamoto, N. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 4185.
7. De Clercq, E. Nat. Rev. Drug Disc. 2003, 2, 581.
8. (a) Bridger, G.; Skerlj, R.; Kaller, A.; Harwig, C.; Bogucki, D.; Wilson, T. R.;
Crawford, J.; McEachern, E. J.; Atsma, B.; Nan, S.; Zhou, Y.; Schols, D.; Smith, C. D.;
DiFluri, R. M. WO patent 2003/055876; (b) Crawford, J. B.; Zhu, Y.; Chen, G.; Baird,
I. R.; Skerlj, R. WO patent 2006/039250; (c) Crawford, J. B.; Chen, G.; Gauthier, D.;
Wilson, T.; Carpenter, B.; Baird, I. R.; McEachern, E.; Kaller, A.; Harwig, C.; Atsma,
B.; Skerlj, R. T.; Bridger, G. J. Org. Process Res. Dev. 2008, 12, 823.
16. Absolute configurations by ab initio vibrational circular dichroism (VCD) were
assigned as follows. Experimental VCD spectra were acquired for samples in
chloroform (approx. 10 mg/125 L) using BioTools ChiralIR FT-VCD
spectrometer operating at 4 cmÀ1 resolution between 2000 and 800 cmÀ1
D
-
l
a
.
Model VCD and IR spectra were simulated at the quantum mechanical level
using the GAUSSIAN 03 software suite. Stereochemical assignments were made by
comparing baseline-corrected experimental VCD spectra with VCD spectra
calculated for corresponding models.
(b) Minick, D. J.; Rutkowske, R. D.; Miller, L. A. D. Am. Pharm. Rev. 2007, 10, 118;
(c) Freedman, T. B.; Cao, X.; Dukor, R. K.; Nafie, L. A. Chirality 2003, 15, 743; (d)
Stephens, P. J.; Devlin, F. J.; Pan, J.-J. Chirality 2008, 20, 643.
18. Knupp, G.; Frahm, A. W. Chemishe Berichte 1984, 117, 2076.
9. Gudmundsson, K. S.; Sebahar, P. R.; Richardson, L. D.; Miller, J. F.; Turner, E. M.;
Catalano, J. G.; Spaltenstein, A.; Lawrence, W.; Thomson, M.; Jenkinson, S.
Bioorg. Med. Chem. Lett. 2009, 19, 5048.
10. Gudmundsson, K. S.; Boggs, S. D.; Catalano, J. G.; Svolto, A.; Spaltenstein, A.;
Thomson, M.; Wheelan, P.; Jenkinson, S. Bioorg. Med. Chem. Lett. 2009, 19, 6399.
11. Abbiati, G.; Arcadi, A.; Bianchi, G.; Fiuseppe, S.; Marinelli, F.; Rossi, E. J. Org.
Chem. 2003, 68, 6959.
19. 2,6-difluoropyridine (31.5 mL, 0.348 mol) was diluted with 30% ammonium
hydroxide (200 mL) in a steel bomb and heated to 110 °C overnight. The bomb
was cooled to room temperature over 2 h then further cooled to 0 °C for 2 h.
The resulting solid was filtered and rinsed with water to obtain 26.39 g as a
white solid. The filtrate was extracted with dichloromethane, dried over
sodium sulfate and concentrated to afford an additional 9.3 g (92% overall
yield) of 6-fluoro-2-pyridinamine. A portion of the solid (5 g, 0.044 mol) was
dissolved in 1,2-dichloroethane (20 mL) and 1,3-dichloro-2-propanone
(34.2 mL, 4.34 mol) was added in two portions. The reaction was stirred at
40 °C over 2 days. The resulting solid was collected by filtration, dissolved in
absolute ethanol (100 mL), and refluxed at 90 °C overnight. The solvent was
evaporated and dichloromethane added to the residue followed by saturated
aqueous sodium bicarbonate. The mixture was added to a separatory funnel
and the phases separated. The aqueous layer was extracted two additional
times with dichloromethane and once with a 3:1 chloroform:isopropanol
mixture. The combined organic layers were dried over sodium sulfate and
concentrated to give 3.61 g (62%) of 2-(chloromethyl)-5-fluoroimidazo[1,2-
a]pyridine as a black oil, which solidified upon standing. 1H NMR (400 MHz,
DMSO-d6) d 5.02 (s, 2H), 7.29 (d, 1H), 7.74 (d, 1H), 7.88 (m, 1H), 8.41 (s, 1H);
MS m/z 185 (M+1).
12.
A mixture of 1,2-cyclohexanedione (43.6 g, 389 mmol), propargylamine
(26.8 mL, 389 mmol), and sodium tetrachloroaurate dihydrate (4.9 g,
11.7 mmol) in ethanol (800 mL) was heated at 75 °C for 16 h. The mixture
was filtered and the filtrate concentrated. The residue was slurried with ethyl
acetate for 30 min and filtered through a silica gel plug with additional ethyl
acetate. The filtrate was concentrated and the residue slurried in diethyl ether.
The precipitate was collected by filtration and dried under vacuum to give 6,7-
dihydro-8(5H)-quinolinone (13.3 g, 23% yield).
13. (a) McEachern, E. J.; Yang, W.; Chen, G.; Skerlj, R. T.; Bridger, G. J. Synth.
Commun. 2003, 33, 3497; (b) Kelly, T. R.; Lebedev, R. L. J. Org. Chem. 2002, 67,
2197; (c) Lemke, T. L.; Shek, T. W.; Cates, L. A.; Smith, L. K. J. Med. Chem. 1997,
20, 1351.
14. An, H.; Wang, T.; Mohan, V.; Griffey, R. H.; Cook, P. D. Tetrahedron 1998, 54, 3999.
15. Separation was performed on ChiralPak ADH column (250 Â 10 mm id, 5
l
m;
20. 1H NMR (400 MHz, methanol-d4) d ppm 1.7 (m, 5H), 2.1 (m, 1H), 2.4 (m, 5H),
2.7 (m, 5H), 3.0 (m, 1H), 3.1 (m, 5H), 3.6 (m, 1H), 3.6 (d, J = 14.6 Hz, 1H), 4.0 (d,
J = 14.5 Hz, 1H), 6.4 (d, J = 7.3 Hz, 1H), 7.2 (m, 3H), 7.5 (d, J = 9.1 Hz, 1H), 7.6 (s,
1H), 8.3 (d, J = 6.4 Hz, 1H); MS m/z 417 (M+1).
ChiralTechnologies, West Chester, PA) under supercritical conditions maintained
at 40 °C, 140 bar, with methanol, containing 0.5% DEA (diethylamine), modified
CO2 (30% MeOH, 70% CO2) delivered at a combined flow rate of 10 mL/min on a
Thar Discovery Series SFC system (Thar Instruments, Inc.; Pittsburgh, PA). The
geoisomers were monitored using a Gilson selectable wavelength 151 UV–vis
detector at 230 nm.
21. The following crystal structure has been deposited at the Cambridge
Crystallographic Data Centre and allocated the deposition number CCDC
760486.