Organic Letters
Letter
by the nucleophilic attack of acetoxyl anion to lead to the
acetoxylated products.
ACKNOWLEDGMENTS
We are grateful to the Natural Science Foundation of China
(21702113, 21602119, U1504208).
■
On the basis of these results and previously related reports,3f,4b
a plausible mechanism was proposed as shown in Figure 5. First,
REFERENCES
■
(1) (a) Zhang, Y.-J.; Abe, T.; Tanaka, T.; Yang, C.-R.; Kouno, I. J. Nat.
Prod. 2001, 64, 1527. (b) Beck, J. J.; Chou, S.-C. J. Nat. Prod. 2007, 70,
891.
(2) For selected examples on lactones synthesis, see: (a) Trend, R. M.;
Ramtohul, Y. K.; Ferreira, E. M.; Stoltz, B. Angew. Chem., Int. Ed. 2003,
42, 2892. (b) Cheng, X.-F.; Li, Y.; Su, Y.-M.; Yin, F.; Wang, J.-Y.; Sheng,
J.; Vora, H. U.; Wang, X.-S.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 1236.
(c) Yang, W.; Wang, S.; Zhang, Q.; Liu, Q.; Xu, X.-X. Chem. Commun.
2015, 51, 661. (d) Xie, X.-M.; Stahl, S. S. J. Am. Chem. Soc. 2015, 137,
3767. (e) Shigehisa, H.; Hayashi, M.; Ohkawa, H.; Suzuki, T.; Okayasu,
H.; Mukai, M.; Yamazaki, A.; Kawai, R.; Kikuchi, H.; Satoh, Y.;
Fukuyama, A.; Hiroya, K. J. Am. Chem. Soc. 2016, 138, 10597.
(3) Cross coupling reaction of C−H/O−H in lactone synthesis:
(a) Gallardo-Donaire, J.; Martin, R. J. Am. Chem. Soc. 2013, 135, 9350.
(b) Wang, Y.; Gulevich, A. V.; Gevorgyan, V. Chem. - Eur. J. 2013, 19,
15836. (c) Li, Y.; Ding, Y.-J.; Wang, J.-Y.; Su, Y.-M.; Wang, X.-S. Org.
Lett. 2013, 15, 2574. (d) Wang, X.-Q.; Gallardo-Donaire, J.; Martin, R.
Angew. Chem., Int. Ed. 2014, 53, 11084. (e) Dai, J.-J.; Xu, W.-T.; Wu, Y.-
D.; Zhang, W.-M.; Gong, Y.; He, X.-P.; Zhang, X.-Q.; Xu, H.-J. J. Org.
Chem. 2015, 80, 911. (f) Ramirez, N. P.; Bosque, I.; Gonzalez-Gomez, J.
C. Org. Lett. 2015, 17, 4550.
Figure 5. Plausible mechanism.
the cathodic dehydrogenation of carboxylic acid or deprotona-
tion via electrogenerated MeO− affords carboxylate anion, which
after further electrooxidation generating carboxylate radical 10.
Then, the carboxylate radical 10 undergoes two different
pathways depending on the substrate structure. For the
lactonization of the C(sp2)−H bond, a 6-endo-trig cyclization
gives intermediate 11. In the case of lactonization of the C(sp3)−
H bond, a 1,5-HAT process occurs to form a stabilized benzyl
radical 12. Finally, radicals 11 and 12 convert to products 2a and
6a, respectively, by losing an electron and a proton.
In conclusion, a scalable and practical electrochemical process
was developed for direct dehydrogenative lactonization of
C(sp2/sp3)−H under external oxidant-, additive-, and metal-
free conditions. The electrochemical reaction proceeds with high
regioselectivity, delivering a variety of lactones, including
coumarin derivatives which are important in the fragrance and
flavor industry. The reaction is clean, low cost, and easy to scale
up, as demonstrated by a 40 g scale reaction, which is of potential
industrial application.
(4) Related reports on the coupling reaction of sp3 C−H with O−H:
(a) Bertrand, M. P.; Oumar-Mahamat, H.; Surzur, J. M. Tetrahedron Lett.
1985, 26, 1209. (b) Togo, H.; Muraki, T.; Hoshina, Y.; Yamaguchi, K.;
Yokoyama, M. J. Chem. Soc., Perkin Trans. 1 1997, 1, 787. (c) Dohi, T.;
Takenaga, N.; Goto, A.; Maruyama, A.; Kita, Y. Org. Lett. 2007, 9, 3129.
(d) Sathyamoorthi, S.; Du Bois, J. Org. Lett. 2016, 18, 6308.
(5) Recent reviews on organic electrosynthesis: (a) Francke, R.; Little,
R. D. Chem. Soc. Rev. 2014, 43, 2492. (b) Francke, R. Beilstein J. Org.
Chem. 2014, 10, 2858. (c) Horn, E. J.; Rosen, B. R.; Baran, P. S. ACS
Cent. Sci. 2016, 2, 302. (d) Yan, M.; Kawamata, Y.; Baran, P. S. Chem.
Rev. 2017, 117, 13230. (e) Yoshida, J.-i.; Shimizu, A.; Hayashi, R. Chem.
(6) Selected recent reports on organic electrosynthesis: (a) Morofuji,
T.; Shimizu, A.; Yoshida, J. J. Am. Chem. Soc. 2015, 137, 9816.
(b) Broese, T.; Francke, R. Org. Lett. 2016, 18, 5896. (c) Horn, E. J.;
Rosen, B. R.; Chen, Y.; Tang, J.-Z.; Chen, K.; Eastgate, M. D.; Baran, P.
S. Nature 2016, 533, 77. (d) Gieshoff, T.; Kehl, A.; Schollmeyer, D.;
Moeller, K. D.; Waldvogel, S. R. J. Am. Chem. Soc. 2017, 139, 12317.
(e) Fu, N.-K.; Sauer, G. S.; Saha, A.; Loo, A.; Lin, S. Science 2017, 357,
575. (f) Wang, P.; Tang, S.; Huang, P.-F.; Lei, A.-W. Angew. Chem., Int.
Ed. 2017, 56, 3009. (g) Yang, Q.-L.; Li, Y.-Q.; Ma, C.; Fang, P.; Zhang,
X.-J.; Mei, T.-S. J. Am. Chem. Soc. 2017, 139, 3293. (h) Zhao, H.-B.; Hou,
Z.-W.; Liu, Z.-J.; Zhou, Z.-F.; Song, J.-S.; Xu, H.-C. Angew. Chem., Int. Ed.
2017, 56, 587. (i) Kawamata, Y.; Yan, M.; Liu, Z.; Bao, D.-H.; Chen, J.;
Starr, J. T.; Baran, P. S. J. Am. Chem. Soc. 2017, 139, 7448.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Detailed experimental procedures and spectral data
(7) (a) Kolbe, H. Justus Liebigs Ann. Chem. 1849, 69, 257. (b) Shtelman,
A. V.; Becker, J. Y. J. Org. Chem. 2011, 76, 4710.
(8) Perkins, R. J.; Xu, H.-C.; Campbell, J. M.; Moeller, K. D. Beilstein J.
Org. Chem. 2013, 9, 1630.
(9) Abraham, D. J.; Gazze, D. M.; Kennedy, P. E.; Mokotoff, M. J. Med.
Chem. 1984, 27, 1549.
(10) Early exploration of electrochemical lactonization: (a) Fichter, F.;
Stenzl, H.; Beglinger, E. Helv. Chim. Acta 1938, 21, 375. (b) Kenner, G.
W.; Murray, M. A.; Tylor, C. M. B. Tetrahedron 1957, 1, 259.
(11) Eberson, L.; Nyberg, K. J. Am. Chem. Soc. 1966, 88, 1686.
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
Notes
The authors declare no competing financial interest.
D
Org. Lett. XXXX, XXX, XXX−XXX