(“NC”), and an electron-deficient alkene (“CC”) in what may
be termed a three-component [C+NC+CC] coupling reac-
tion.12 The underlying cascade of molecular events was built
on the 1,3-dipolar cycloaddition of an azomethine ylide to
an electron-deficient dipolarophile. This concerted process
is a powerful synthetic transformation13 that creates two new
C-C bonds and up to four chiral centers in a single step.
Absolute stereocontrol during the 1,3-dipolar cycloaddition
has been achieved using either chiral, nonracemic substrates
or auxiliaries. The latter approach is, of course, more general,
but it still suffers from certain limitations. Catalytic asym-
metric versions of this cycloaddition reaction that proceed
via metalated azomethine ylides14 have recently been devel-
oped.15 However, this technology is still limited in terms
of the structural variability of both the aldehyde (aromatic al-
dehydes are usually employed) and dipolarophile components.
We now report an exceedingly mild, efficient, and selective
AgI-catalyzed asymmetric [C+NC+CC] synthesis of pyr-
rolidines. The method combines the advantages of a reliable
multipurpose, reusable auxiliary and metal catalysis. A key
feature of this reaction is the use of Oppolzer’s chiral glycyl
sultam as the amine component. The value of azomethine
ylides incorporating this chiral auxiliary has been previously
demonstrated with preformed aldimines using both thermal16
and zinc-mediated17 tautomerization. In the present case, the
sultam facilitates the desired reaction cascade and provides
a reliable means to control the absolute stereochemistry of
the products independent of existing chirality. Grigg had
previously noted the benefits of using silver(I) salts for the
generation of metalloazomethine ylides from preformed
enolizable aliphatic imines.18 Significantly, the asymmetric
three-component reaction19 technology described herein
permits unprecedented variation of the aldehyde component,
enabling the synthesis of highly functionalized pyrrolidines.
Even though numerous examples of three-component
reactions based on the cascade imine f azomethine ylide
f 1,3-dipolar cycloaddition sequence have been reported
(see ref 12 for a comprehensive listing), development of a
general asymmetric [C+NC+CC] coupling reaction remains
a challenging goal.20 This is especially true in the case of
enolizable aldehydes, where the following requirements must
be met (Scheme 1). First, the aldehyde I must cleanly and
Scheme 1. AgI-Catalyzed Asymmetric [C+NC+CC] Coupling
Reaction Cascadea
(6) For a comprehensive review of the bioxalomycins and related
tetrahydroisoquinoline antibiotics, see: Scott, J. D.; Williams, R. M. Chem.
ReV. 2002, 102, 166.
(7) MaClean, D.; Schullek, J. R.; Murphy, M. M.; Ni, Z.-J.; Gordon, E.
M.; Gallop, M. A. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 2805.
(8) (a) Hanessian, S.; Bayrakdarian, M. Bioorg. Med. Chem. Lett. 2000, 10,
427. (b) Hanessian, S.; Bayrakdarian, M. Tetrahedron Lett. 2002, 43, 9441.
(9) Lo, M. M.-C.; Neimann, C. S.; Nagayama, S.; Perlstein, E. O.;
Schreiber, S. L. J. Am. Chem. Soc. 2004, 126, 16077.
a X* ) Oppolzer’s D- or L-camphorsultam.
(10) Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Qiu, S.; Ding, Y.; Gao,
W.; Stuckey, J.; Krajewski, K.; Roller, P. P.; Tomita, Y.; Parrish, D. A.;
Deschamps, J. R.; Wang, S. J. Am. Chem. Soc. 2005, 127, 10130.
(11) Burton, G.; Ku, T. W.; Carr, T. J.; Kiesow, T.; Sarisky, R. T.; Lin-
Goerke, J.; Baker, A.; Earnshaw, D. L.; Hofmann, G. A.; Keenan, R. M.;
Dhanak, D. Bioorg. Med. Chem. Lett. 2005, 15, 1553.
(12) Garner, P.; Kaniskan, H. U¨ . J. Org. Chem. 2005, 70, 10868.
(13) Reviews: (a) Kanemasa, S.; Tsuge, O. In AdVances in Cycloaddition;
Curran, D. P., Ed.; JAI Press: Greenwich, CT, 1993; Vol. 3, pp 99-159.
(b) Grigg, R.; Sridharan, V. In AdVances in Cycloaddition; Curran, D. P.,
Ed.; JAI Press: Greenwich, CT, 1993; Vol. 3, pp 161-204. (c) Kanemasa,
S. Synlett 2002, 1371. (d) Harwood, L. M.; Vickers, R. J. In Synthetic
Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles
and Natural Products; Padwa, A., Pearson, W. H., Eds.; Wiley: Hoboken,
NJ, 2003; pp 169-252. (e) Broggini, G.; Molteni, G.; Terraneo, A.; Zecchi,
G. Heterocycles 2003, 59, 823. (f) Pearson, W. H.; Stoy, P. Synlett 2003,
903. (g) Najera, C.; Sansano, J. M. Curr. Org. Chem. 2003, 7, 1105.
(14) (a) Barr, D.; Grigg, R.; Gunaratne, H. Q. N.; Kemp, J.; McMeekin,
P.; Sridharan, V. Tetrahedron 1988, 44, 557. (b) Tsuge, O.; Kanemasa, S.;
Yoshioka, M. J. Org. Chem. 1988, 53, 1384.
quickly condense with the amine component II to give the
intermediate imine III. The aldehydes and their imines must
resist tautomerization to their corresponding enols and
enamines, respectively. The amine component must not react
in a nucleophilic sense with activated dipolarophiles V.
Second, reactive azomethine ylide IV must be generated from
the imine without any unwanted ancillary reactivity during
the net tautomerization process. Third, the azomethine ylide
IV must be efficiently trapped by the dipolarophile V to
afford the pyrrolidine VI. Competitive heterocycloaddition
to either the aldehyde (oxazolidine formation) or the imine
(imidazolidine formation) must be minimized. After this
gauntlet of potential side reactions is run, the goal of
controlling both relative and absolute stereochemistry during
the 1,3-dipolar cycloaddition reaction must be dealt with.
(15) (a) Gothelf, A. S.; Gothelf, K. V.; Hazell, R. G.; Jørgensen, K. A.
Angew. Chem., Int. Ed. 2002, 41, 4236. (b) Longmire, J. M.; Wang, B.;
Zhang, X. J. Am. Chem. Soc. 2002, 124, 13400. (c) Chen, C.; Li, X.;
Schreiber, S. L. Ibid. 2003, 125, 10174. (d) Oderaotoshi, Y.; Cheng, W.;
Fujitomi, S.; Kasano, Y.; Minakata, S.; Komatsu, M. Org. Lett. 2003, 5,
5043. (e) Kno¨pfel, T. F.; Aschwanden, P.; Ichikawa, T.; Watanabe, T.;
Carreira, E. M. Angew. Chem., Int. Ed. 2004, 43, 5971. (f) Stohler, R.;
Wahl, F.; Pfaltz, A. Synthesis 2005, 1431. (g) Zeng, W.; Zhou, Y.-G. Org.
Lett. 2005, 7, 5055. (h) Yan, X.-X.; Peng, Q.; Zhang, Y.; Zhang, K.; Hong,
W.; Hou, X.-L.; Wu, Y.-D. Angew. Chem., Int. Ed. 2006, 45, 1979.
(16) Garner, P.; Dogan, O¨ .; Youngs, W. J.; Kennedy, V. O.; Protasiewicz,
J.; Zaniewski, R. Tetrahedron 2001, 57, 71.
Simply mixing aldehyde I, chiral glycyl sultam II (X* )
Oppolzer’s camphorsultam),21 and electron-deficient alkene
V in THF in the presence of a catalytic amount of AgOAc
resulted in the clean production of highly functionalized
pyrrolidines VI (see Table 1). The reaction proceeds through
(18) Grigg, R.; Montgomery, J.; Somasunderam, A. Tetrahedron 1992,
48, 10431.
(19) Ramo´n, D. J.; Yus, M. Angew. Chem., Int. Ed. 2005, 44, 1602.
(20) For a nice example of such a process, see: Onishi, T.; Sebahar, P.
R.; Williams, R. M. Org. Lett. 2003, 5, 3135. Also see ref 9.
(17) Dogan, O¨ .; O¨ ner, I.; U¨ lku, D.; Arici, C. Tetrahedron: Asymmetry
2002, 13, 2099.
3648
Org. Lett., Vol. 8, No. 17, 2006