5822
A. Cosp et al. / Tetrahedron Letters 47 (2006) 5819–5823
7. For a total synthesis of 3-deoxydebromoaplysiatoxin, see:
O
OR
OMe
c
Toshima, H.; Suzuki, T.; Nishiyama, S.; Yamamura, S.
Tetrahedron Lett. 1989, 30, 6725–6728.
N
MeO
8. For a total synthesis of oscillatoxin D, see: Toshima, H.;
Goto, T.; Ichihara, A. Tetrahedron Lett. 1995, 36, 3373–
3374.
21 R=Bn
23 R=H
a
b
OR
d
O
OTBS
OMe
9. (a) Walkup, R. D.; Cunningham, R. T. Tetrahedron Lett.
1987, 28, 4019–4022; (b) Ireland, R. E.; Thaisrivongs, S.;
Dussault, P. H. J. Org. Chem. 1988, 110, 5768–5779; (c)
Walkup, R. D.; Kane, R. R.; Boatman, P. D., Jr.;
Cunningham, R. T. Tetrahedron Lett. 1990, 31, 7587–
7590; (d) Walkup, R. D.; Boatman, P. D., Jr.; Kane, R.
R.; Cunningham, R. T. Tetrahedron Lett. 1991, 32, 3937–
3940; (e) Stolze, D. A.; Perron-Sierra, F.; Heeg, M. J.;
Albizati, K. F. Tetrahedron Lett. 1991, 32, 4081–4084; (f)
Walkup, R. D.; Kahl, J. D.; Kane, R. R. J. Org. Chem.
1998, 63, 9113–9116; (g) Toshima, H.; Ichihara, A. Biosci.
Biotechnol. Biochem. 1998, 62, 599–602.
24 R=TBS
H
OTBS
OMe
OMe
25
OTBS
O
O
26
OTBS
e
O
OMe
´
10. (a) Cosp, A.; Romea, P.; Talavera, P.; Urpı, F.; Vilarrasa,
J.; Font-Bardia, M.; Solans, X. Org. Lett. 2001, 3, 615–
22
OH
´
617; (b) Cosp, A.; Romea, P.; Urpı, F.; Vilarrasa, J.
Tetrahedron Lett. 2001, 42, 4629–4631; (c) Cosp, A.;
Scheme 7. Reagents and conditions: (a) i. H2, 10% Pd/C, toluene, rt,
3 h; ii. H2, 5% Rh/Al2O3, MeOH, rt, 1 h; 95%. (b) TBSOTf, 2,6-
lutidine, CH2Cl2, rt, 13 h; 61%. (c) DIBALH, THF, À78 °C, 3 h; 88%.
(d) (CF3CH2O)2POCH2CO2Me, K2CO3, 18-crown-6, toluene, 0 °C,
4 h; 91%. (e) HC1, MeOH, rt, 24 h; 58%.
´
´
Larrosa, I.; Vilasıs, I.; Romea, P.; Urpı, F.; Vilarrasa, J.
Synlett 2003, 1109–1112.
11. Chiral 1,3-thiazolidine-2-thiones were first used in highly
diastereoselective aldol processes by Nagao and Fujita: (a)
Nagao, Y.; Hagiwara, Y.; Kumagai, T.; Ochiai, M.; Inoue,
T.; Hashimoto, K.; Fujita, E. J. Org. Chem. 1986, 51,
2391–2393; For a recent review on the application of 1,3-
thiazolidine-2-thiones in asymmetric synthesis, see: (b)
intermediate toward oscillatoxin D proves the poten-
tiality of our approach to tackle the synthesis of the
abovementioned metabolites.
´
Velazquez, F.; Olivo, H. F. Curr. Org. Chem. 2002, 6, 1–38.
12. For relevant applications of chiral 1,3-thiazolidine-2-
thiones in stereoselective aldol reactions, see: (a) Hsiao,
C.-N.; Liu, L.; Miller, M. J. J. Org. Chem. 1987, 52, 2201–
Acknowledgments
´
´
´
2206; (b) Gonzalez, A.; Aiguade, J.; Urpı, F.; Vilarrasa, J.
Tetrahedron Lett. 1996, 37, 8949–8952; (c) Crimmins, M.
T.; King, B. W.; Tabet, E. A.; Chaudhary, K. J. Org.
Chem. 2001, 66, 894–902; (d) Evans, D. A.; Downey, C.
W.; Shaw, J. T.; Tedrow, J. S. Org. Lett. 2002, 4, 1127–
1130; (e) Zhang, Y.; Phillips, A. J.; Sammakia, T. Org.
Lett. 2004, 6, 23–25.
Financial support from the Ministerio de Ciencia y Tec-
´
nologıa and Fondos FEDER (Grant BQU2002-01514),
and from the Generalitat de Catalunya (2001SGR00051
and 2005SGR00584), and a doctorate studentship (Gen-
eralitat de Catalunya) to A.C. are acknowledged.
13. See the preceding communication. Tetrahedron Lett. 2006,
References and notes
14. Walkup et al. first recognized that a general approach to
all of the members of this family of metabolites could take
advantage of the common fragment C9–C21. See Ref. 9f.
15. Landais, Y.; Robin, J.-P. Tetrahedron 1992, 48, 7185–7196.
16. Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem.
Soc. 1982, 104, 1737–1739.
17. Myers, A. G.; Yang, B. H.; Chen, H.; McKinstry, L.;
Kopecky, D. J.; Gleason, J. L. J. Am. Chem. Soc. 1997,
119, 6496–6511.
18. Tsunoda, T.; Suzuki, M.; Noyori, R. Tetrahedron Lett.
1980, 21, 1357–1358.
19. For a previous analysis of double asymmetric reactions
involving oxonium cations, see Ref. 10c.
20. For a close and inspiring example of Lewis acid mediated
aldol reactions involving boron enolates from N-propa-
noyl-1,3-oxazolidin-2-ones, see: Walker, M. A.; Heath-
cock, C. H. J. Org. Chem. 1991, 56, 5747–5750.
21. For transition states of related Lewis acid mediated aldol
addition, see: Mahrwald, R. Chem. Rev. 1999, 99, 1095–
1120.
1. Kato, Y.; Scheuer, P. J. J. Am. Chem. Soc. 1974, 96, 2245–
2246.
2. (a) Mynderse, J. S.; Moore, R. E.; Kashiwagi, M.; Norton,
T. R. Science 1977, 196, 538–540; (b) Mitchell, S. S.;
Faulkner, D. J.; Rubins, K.; Bushman, F. D. J. Nat. Prod.
2000, 63, 279–282.
3. Complete structures including absolute stereochemistries
have been established by Moore et al. through spectro-
scopic and crystallographic studies. See: (a) Moore, R. E.;
Blackman, A. J.; Cheuk, C. E.; Mynderse, J. S.; Matsu-
moto, G. K.; Clardy, J.; Woodard, R. W.; Graig, J. C. J.
Org. Chem. 1984, 49, 2484–2489; (b) Entzeroth, M.;
Blackman, A. J.; Mynderse, J. S.; Moore, R. E. J. Org.
Chem. 1985, 50, 1255–1259.
4. For a comprehensive review on natural products from
marine blue-green algae, see: Burja, A. M.; Banaigs, B.;
Abou-Mansour, E.; Burgess, J. G.; Wright, P. C. Tetra-
hedron 2001, 57, 9347–9377.
22. Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405–
4408.
5. (a) Kishi, Y.; Rando, R. R. Acc. Chem. Res. 1998, 31, 163–
172; (b) Knust, H.; Hoffmann, R. W. Helv. Chim. Acta
2003, 86, 1871–1892.
6. For a total synthesis of debromoaplysiatoxin, see: Park,
P.-u.; Broka, C. A.; Johnson, B. F.; Kishi, Y. J. Am.
Chem. Soc. 1987, 109, 6205–6207.
23. Selected spectroscopic data for 22: [a]D +8.8 (c 0.25,
CHCl3); IR (film): 3338, 1702 cmÀ1 1H NMR (CDCl3,
;
400 MHz): d 7.21 (1H, t, J = 7.7 Hz, ArH), 6.85–6.80 (2H,
m, ArH), 6.79–6.75 (1H, m, ArH), 6.64 (1H, dd, J = 9.7,