Communications
[5] See the Supporting Information for details of experimental
NMR procedures.
[6] See the Supporting Information for the preparation of labeled
alkanes.
tive stabilization, though this difference could not be quanti-
fied.
The equilibrium constant K1 /1 is reduced somewhat by
a
e
the introduction of deuterium into vicinal sites (using
[D8]cyclohexane). Assuming that the “normal” deuterium
isotope shifts are similar for axial and equatorial protons,
which is the case in free cyclohexane, it is apparent
(Figure 1c) that the shifts of the two protons are closer
together in this isotopomer and that the equilibrium constant
is therefore reduced (from ꢂ 2.9 to ꢂ 2.7). Ascribing this
[7] J. Geertsen, J. Oddershede, W. T. Raynes, Magn. Reson. Chem.
1993, 31, 722.
[8] See the Supporting Information for details of the quantum
mechanical calculations.
[9] Details of the derivation of these values are given in the
Supporting Information.
[10] For calculated structures of [CpRe(CO)2(ethane)] and
[CpRe(CO)2(methane)], respectively, see: a) H. Yang, M. C.
Asplund, K. T. Kotz, M. J. Wilkens, H. Frei, C. B. Harris, J. Am.
Chem. Soc. 1998, 120, 10154; b) R. G. Bergman, T. R. Cundari,
A. M. Gillespie, T. B. Gunnoe, W. D. Harman, T. R. Klinckman,
M. D. Temple, D. P. White, Organometallics 2003, 22, 2331.
[11] I. Castro-Rodriguez, H. Nakai, P. Gantzel, L. N. Zakharov, A. L.
Rheingold, K. Meyer, J. Am. Chem. Soc. 2003, 125, 15734.
[12] a) A. S. Cieplak, J. Am. Chem. Soc. 1981, 103, 4540; b) C. T.
Johnson, B. D. Tait, A. S. Cieplak, J. Am. Chem. Soc. 1987, 109,
5875; c) A. S. Cieplak, J. Org. Chem. 1998, 63, 521; d) A. S.
Cieplak, Chem. Rev. 1999, 99, 1265.
[13] a) W. Adcock, A. N. Abeyrickrema, J. Org. Chem. 1982, 47,
2957; b) W. Adcock, A. N. Abeyrickrema, G. B. Kok, J. Org.
Chem. 1984, 49, 1387; c) W. Adcock, V. S. Iyer, J. Org. Chem.
1988, 53, 5259; d) W. Adcock, N. A. Trout, J. Org. Chem. 1991,
56, 3229; e) W. Adcock, J. Cotton, N. A. Trout, J. Org. Chem.
1994, 59, 1867; f) W. Adcock, N. J. Head, N. R. Lokan, N. A.
Trout, J. Org. Chem. 1997, 62, 6177; g) W. Adcock, N. A. Trout,
Magn. Reson. Chem. 1998, 36, 181; h) W. Adcock, N. A. Trout,
Chem. Rev. 1999, 99, 1415.
[14] a) C. K. Cheung, L. T. Tseng, M. H. Lin, S. Srivastava, W. J.
le Noble, J. Am. Chem. Soc. 1986, 108, 1598; b) M. Xie, W. J.
le Noble, J. Org. Chem. 1989, 54, 3836; c) V. R. Bodepudi, W. J.
le Noble, J. Org. Chem. 1991, 56, 2001; d) W.-S. Chung, N. J.
Turro, S. Srivastava, W. J. le Noble, J. Org. Chem. 1991, 56, 5020;
e) H. Li, J. E. Silver, W. H. Watson, R. P. Kashyap, W. J.
le Noble, J. Org. Chem. 1991, 56, 5932; f) H. Li, W. J. le Noble,
Recl. Trav. Chim. Pays-Bas 1992, 111, 199; g) V. R. Bodepudi,
W. J. le Noble, J. Org. Chem. 1994, 59, 3265; h) M. Kaselj, W.-S.
Chung, W. J. le Noble, Chem. Rev. 1999, 99, 1287.
[15] a) B. W. Gung, M. M. Yanik, J. Org. Chem. 1996, 61, 947;
b) B. W. Gung, Tetrahedron 1996, 52, 5263; c) B. W. Gung, Chem.
Rev. 1999, 99, 1377.
[16] a) M. D. Rozeboom, K. N. Houk, J. Am. Chem. Soc. 1982, 104,
1189; b) Y.-D. Wu, K. N. Houk, J. Am. Chem. Soc. 1987, 109, 908;
c) Y.-D. Wu, J. A. Tucker, K. N. Houk, J. Am. Chem. Soc. 1991,
113, 5018.
[17] a) T. Laube, H. U. Stilz, J. Am. Chem. Soc. 1987, 109, 5876; b) T.
Laube, T.-K. Ha, J. Am. Chem. Soc. 1988, 110, 5511; c) T. Laube,
S. Hollenstein, J. Am. Chem. Soc. 1992, 114, 8812.
[18] a) P. R. Rablen, R. W. Hoffmann, D. A. Hrovat, W. T. Boron, J.
Chem. Soc. Perkin Trans. 2 1999, 1719; b) A. Filippi, N. A. Trout,
P. Brunelle, W. Adcock, T. Sorenson, M. Speranza, J. Org. Chem.
2004, 69, 5537.
ꢀ
effect entirely to the replacement of two trans-diaxial C H
ꢀ
bonds by two C D bonds leads to a reduction in energy of
about 46 Jmolꢀ1 per bond. This is consistent with the fact that
ꢀ
the stronger C D bond is less likely to donate its electrons.
This observation adds further weight to the hypothesis that
the observed phenomenon is indeed caused by an electronic
effect since the steric effect of replacing hydrogen with
deuterium in vicinal sites is expected to be negligible.
Qualitative MO arguments also suggest that the axial
hydrogen atoms are better electron donors than the equato-
rial ones. The degenerate HOMOs of cyclohexane are
ꢀ
ꢀ
delocalized over the C C and equatorial C H bonds. How-
ever, the contribution on each equatorial hydrogen atom is
only 5.6% (sum of the squared coefficients of the two H basis
functions in the Eigenvector). Three occupied combinations
of essentially pure axial sCꢀH orbitals are only roughly 0.5 eV
lower in energy than the HOMO and provide more effective
electron donation than the HOMOs.[22] These orbitals reflect
exactly the hyperconjugation arguments given above.
In conclusion, we have identified an alkane complex,
[CpRe(CO)2(cyclohexane)], in which binding occurs prefer-
ꢀ
entially through the axial C H bond of a methylene group.
ꢀ
The ratio of the complexation of each type of C H bond in
cyclohexane (K1 /1 ꢂ 2.9) suggests the difference in the
a
e
ꢀ
ꢀ
ꢀ
electron-donating abilities of C H, C C, and even C D
bonds may be determined, assuming that there is no steric
preference for either mode of complexation.
Received: January 24, 2006
Published online: June 13, 2006
Keywords: ab initio calculations · alkane ligands ·
.
ꢀ
C H activation · hyperconjugation · NMR spectroscopy
´
[1] a) S. Zaric, M. B. Hall, J. Phys. Chem. A 1997, 101, 4646, and
references therein; b) C. Hall, R. N. Perutz, Chem. Rev. 1996, 96,
3125.
[19] P. Deslongchamps, Stereoelectronic Effects in Organic Chemistry,
Pergamon, Oxford, 1983.
[20] G. J. Kubas, J. Organomet. Chem. 2001, 635, 37.
[21] M. E. Gonzµlez-Nfflꢁez, G. Castellano, C. Andrew, J. Royo, M.
Bµguena, R. Mello, G. Asensio, J. Am. Chem. Soc. 2001, 123,
7487.
[2] Reviews: a) J. A. Labinger, J. E. Bercaw, Nature 2002, 417, 507;
b) R. H. Crabtree, J. Chem. Soc. Dalton Trans. 2001, 17, 2437;
c) W. D. Jones, Acc. Chem. Res. 2003, 36, 140; d) M. Lersch, M.
Tilset, Chem. Rev. 2005, 105, 2471; e) S. R. Klei, J. T. Golden, P.
Burger, R. G. Bergman, J. Mol. Catal. A 2002, 189, 79.
[3] a) S. Geftakis, G. E. Ball, J. Am. Chem. Soc. 1998, 120, 9953; b) S.
Geftakis, G. E. Ball, J. Am. Chem. Soc. 1999, 121, 6336; c) D. J.
Lawes, S. Geftakis, G. E. Ball, J. Am. Chem. Soc. 2005, 127, 4134.
[4] The barrier to ring inversion of cyclohexane is 43 kJmolꢀ1 (F. R.
Jensen, D. S. Noyce, C. H. Sederholm, A. J. Berlin, J. Am. Chem.
Soc. 1960, 82, 1256); so the rate of interconversion of the chair
forms of cyclohexane is ca. 1 sꢀ1 at 180 K.
[22] See: R. Koch, T. Clark, The Chemistꢀs Electronic Book of
Orbitals, Springer, Berlin, 1999.
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 4486 –4490