C O M M U N I C A T I O N S
of cells with an excess of the cell-permeable, high affinity zinc
chelator, N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN),
decreases the intracellular ratio to equal that of the unbound probe
(Figure 2D). This and control experiments on untreated cells indicate
that autofluorescence does not contribute to the ratio images.
These emission ratio imaging experiments reveal that Zinbo-5
can readily reveal changes in intracellular zinc availability. The
photophysical data further suggest that Zinbo compounds can also
be used in epifluorescence excitation ratio imaging approaches to
studying zinc in tissues and cells. These methods are particularly
amenable to investigation of live tissue samples in real time and
are being applied to studies of hippocampus, where physiological
fluctuations in synaptic zinc concentration are estimated to be as
high as 100-300 µM or as low 2 nM.5
Figure 1. (A) Emission spectra of Zinbo-5 with the excitation at 356 nm
in Zn2+/EGTA buffered system (50 mM HEPES, pH 7.20, 0.1 M KNO3;
10 mM EGTA, 1-9 mM zinc sulfate) at 0, 0.14, 0.29, 0.66, 1.1, 1.8, 2.6,
4.0, 6.1, and 11 nM free Zn2+, respectively. (B) Plots of the fluorescence
intensity ratio between 395 and 443 nm (I443/I395) with a best curve for a
dissociation constant of 2.2(1) ( 0.1 × 10-9 M.
Acknowledgment. We thank NIH DK52627 and GM38784
(T.V.O.), JSPS (M.T.), the Robert H. Lurie Comprehensive Cancer
Center of Northwestern University, the Rice Foundation, and NSF
(CHE-9810378) for financial support, and N. Brown and E.
Kawamoto for advice.
Supporting Information Available: Synthesis and characterization
of Zinbo-5, UV-vis titration for Zn2+, and experimental details (PDF).
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) Sorensen, M. B.; Stoltenberg, M.; Juhl, S.; Danscher, G.; Ernst, E. Prostate
1997, 31, 125-130.
(2) Gee, K. R.; Zhou, Z. L.; Qian, W. J.; Kennedy, R. J. Am. Chem. Soc.
2002, 124, 776-778.
(3) Danscher, G. Histochemistry 1981, 71, 81-88.
(4) Frederickson, C. J.; Suh, S. W.; Silva, D.; Thompson, R. B. J. Nutr. 2000,
130, 1471S-1483S.
(5) Kay, A. R. J. Neurosci. 2003, 23, 6847-6855.
(6) Li, L.; Kaplan, J. J. Biol. Chem. 2001, 276, 5036-5043.
(7) MacDiarmid, C. W.; Milanick, M. A.; Eide, D. J. J. Biol. Chem. 2003,
278, 15065-15072.
(8) Lee, J. Y.; Cole, T. B.; Palmiter, R. D.; Koh, J. Y. J. Neurosci. 2000, 20,
RC79.
(9) Potter, S. M.; Wang, C. M.; Garrity, P. A.; Fraser, S. E. Gene 1996, 173,
25-31.
(10) Shults, M. D.; Pearce, D. A.; Imperiali, B. J. Am. Chem. Soc. 2003, 125,
10591-10597.
Figure 2. Emission ratio images of fibroblast [L(TK)-] cells in Zinbo-5.
(A) Brightfield transmission image; (B) ratio of images collected at 445
and 402 nm; (C) ratio image following a 30 min treatment with 10 µM
zinc sulfate and 20 µM pyrithione at pH 7.4, 25 °C, followed by wash with
Zinbo-5 stock; (D) ratio image of the same field after a 15 min treatment
with 1 mM TPEN.
(11) Thompson, R. B.; Peterson, D.; Mahoney, W.; Cramer, M.; Maliwal, B.
P.; Suh, S. W.; Frederickson, C.; Fierke, C.; Herman, P. J. Neurosci.
Methods 2002, 118, 63-75.
(12) Zalewski, P. D.; Forbes, I. J.; Seamark, R. F.; Borlinghaus, R.; Betts, W.
H.; Lincoln, S. F.; Ward, A. D. Chem. Biol. 1994, 1, 153-161.
(13) Koike, T.; Watanabe, T.; Aoki, S.; Kimura, E.; Shiro, M. J. Am. Chem.
Soc. 1996, 118, 12696-12703.
for molecules lacking a center of symmetry27 such as Zinbo-5, the
one-photon spectra serve as a guide in the TPE experiment. A mode-
locked TiSa laser tuned to 710 nm provided optimal intensity for
two-photon excitation near the isosbestic point in the UV-vis
titration (356 nm) (Figure S1), exciting both the free and the metal-
bound forms of the probe. Cells were imaged in the presence of
Zinbo-5 using a Zeiss LSM 510 with a META detector allowing
data collection in 10.7 nm windows centered at 445 and 402 nm
(Figure S4). The image produced by taking the ratio of emission
intensities at 445 and 402 nm was multiplied by 30 to increase
brightness and scaled in color using NIH Image (Figure 2). For
cells grown in standard conditions,15 the ratio image reveals very
low levels of available Zn2+ (Figure 2B). The ratio image changes
in a manner dependent upon the availability of Zn2+ within the
cell: the ratio is clearly higher when the intracellular Zn2+ is
increased by addition of 10 µM zinc sulfate and 20 µM pyrithione,
a zinc-selective ionophore (Figure 2C). This corresponds to an
average intracellular increase in the ratio of ca. 15%. The signals
in these ratio images were shown to originate from the Zn2+/Zinbo-5
complex by treatment with a tighter binding competitor. Treatment
(14) Fahrni, C. J.; O’Halloran, T. V. J. Am. Chem. Soc. 1999, 121, 11448-
11458.
(15) Nasir, M. S.; Fahrni, C. J.; Suhy, D. A.; Kolodsick, K. J.; Singer, C. P.;
O’Halloran, T. V. J. Biol. Inorg. Chem. 1999, 4, 775-783.
(16) Kimura, E.; Aoki, S. Biometals 2001, 14, 191-204.
(17) Burdette, S. C.; Walkup, G. K.; Spingler, B.; Tsien, R. Y.; Lippard, S. J.
J. Am. Chem. Soc. 2001, 123, 7831-7841.
(18) Burdette, S. C.; Lippard, S. J. Coord. Chem. ReV. 2001, 216-217, 333-
361.
(19) Maruyama, S.; Kikuchi, K.; Hirano, T.; Urano, Y.; Nagano, T. J. Am.
Chem. Soc. 2002, 124, 10650-10651.
(20) Henary, M. M.; Fahrni, C. J. J. Phys. Chem. A 2002, 106, 5210-5220.
(21) Hirano, T.; Kikuchi, K.; Urano, Y.; Nagano, T. J. Am. Chem. Soc. 2002,
124, 6555-6562.
(22) Burdette, S. C.; Frederickson, C. J.; Bu, W.; Lippard, S. J. J. Am. Chem.
Soc. 2003, 125, 1778-1787.
(23) Woodroofe, C. C.; Lippard, S. J. J. Am. Chem. Soc. 2003, 125, 11458-
11459.
(24) Taki, M.; Hitomi, Y.; O’Halloran, T. V. Unpublished work. Northwestern
University, Evanston, IL, 2003.
(25) Fahrni, C. J.; Henary, M. M.; VanDerveer, D. G. J. Phys. Chem. A 2002,
106, 7655-7663.
(26) Walkup, G. K. B., S. C.; Lippard, S. J.; Tsien, R. Y. J. Am. Chem. Soc.
2000, 122, 5644-5645.
(27) (a) Fan, G. Y.; Fujisaki, H.; Miyawaki, A.; Tsay, R. K.; Tsien, R. Y.;
Ellisman, M. H. Biophys. J. 1999, 76, 2412-2420. (b) Xu, C.; Webb, W.
W. J. Opt. Soc. Am. B 1996, 13, 481-491.
JA039073J
9
J. AM. CHEM. SOC. VOL. 126, NO. 3, 2004 713