Organic Letters
Letter
(3) Kennis, L. E. J.; Bischoff, F. P.; Mertens, C. J.; Love, C. J.; Van den
Keybus, F. A. F.; Pieters, S.; Braeken, M.; Megens, A. A. H. P.; Leysen, J.
E. Bioorg. Med. Chem. Lett. 2000, 10, 71.
(4) Pettersson, A.; Gradin, K.; Hedner, T.; Persson, B. Naunyn-
Schmiedeberg's Arch. Pharmacol. 1985, 329, 394.
(5) Hajimahdi, Z.; Zarghi, A.; Zabihollahi, R.; Aghasadeghi, M. R.
Med. Chem. Res. 2013, 22, 2467.
(6) Harriman, G. C. B.; Chi, S.; Zhang, M.; Crowe, A.; Bennett, R. A.;
Parsons, I. Tetrahedron Lett. 2003, 44, 3659.
(7) Tsanakopoulou, M.; Cottin, T.; Buttner, A.; Sarli, V.; Malamidou-
Xenikaki, E.; Spyroudis, S.; Giannis, A. ChemMedChem 2008, 3, 429.
(8) Mane, U. R.; Li, H.; Huang, J.; Gupta, R. C.; Nadkarni, S. S.;
Giridhar, R.; Naik, P. P.; Yadav, M. R. Bioorg. Med. Chem. 2012, 20,
6296.
pyridyl nitrogen of 14a coordinates to Pd(II) and subsequent
ligand exchange of acetate with CO forms complex A. Insertion
of the palladium metal into the C(sp2)−H of the appended
vinylogous moiety25 with a concomitant loss of acetic acid leads
to intermediate B formation. After migratory insertion of CO to
form intermediate C, reductive elimination affords product 15a
along with Pd(0), the latter of which is oxidized by K2S2O8 to
regenerate the Pd(II) catalyst. It is notable that other palladium
catalysts that lacked the acetate ligand were not functional in
promoting the reaction, an observation that may implicate
acetate as part of a critical carboxylate-assisted C−H cleavage
(not pictured).26,27
Advancements in metal-catalyzed C−H activation not only
have enabled efficient heterocycle construction but also have
facilitated the assembly of challenging chemical architecture.
Herein, we described the synthesis of two unprecedented
frameworks that feature a common, privileged pyridopyrimidine
scaffold. The transformation leverages a pendant pyridyl group
to direct the palladium-mediated cyclocarbonylation of vinyl-
ogous amides and ureas, which are bidirectionally diversified.
Notably, the substrates did not require the intermediacy of a
vinylic halogen to afford the product, and the transformation was
carried out in a few hours with catalytic quantities of palladium
acetate and with atmospheric CO pressure. Over 25 substrates
were exemplified under these conditions with yields of up to
90%. Furthermore, most of the pyridopyrimidinones contain a
ketone moiety that is readily derivatized. These products and
their functionalized analogs, along with the pyrrolidinone-fused
pyridopyrimidinones, have been collectively submitted to a
broad-spectrum screening effort that will survey the library for
valuable biological activity that can be optimized as part of a
traditional medicinal chemistry program.
(9) Roslan, I. I.; Lim, Q.-X.; Han, A.; Chuah, G.-K.; Jaenicke, S. Eur. J.
Org. Chem. 2015, 2015, 2351.
(10) Hermecz, I.; Vasvari-Debreczy, L.; Horvath, A.; Balogh, M.;
Kokosi, J.; DeVos, C.; Rodriguez, L. J. Med. Chem. 1987, 30, 1543.
(11) Zou, P.; Xie, M. H.; Luo, S. N.; He, Y. J.; Liu, Y. L. Chin. J. Pharm.
2002, 33, 215.
(12) Ferrarini, P. L.; Mori, C.; Livi, O.; Biagi, G.; Marini, A. M. J.
Heterocycl. Chem. 1983, 20, 1053.
̈
(13) Brennfuhrer, A.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed.
2009, 48, 4114.
(14) Wu, X.-F.; Neumann, H.; Beller, M. Chem. Soc. Rev. 2011, 40,
4986.
(15) Wu, X.-F.; Neumann, H.; Beller, M. Chem. Rev. 2013, 113, 1.
(16) Xie, Y.; Chen, T.; Fu, S.; Jiang, H.; Zeng, W. Chem. Commun.
2015, 51, 9377.
(17) Chen, J.; Natte, K.; Wu, X.-F. Tetrahedron Lett. 2015, 56, 6413.
(18) Liang, D.; He, Y.; Zhu, Q. Org. Lett. 2014, 16, 2748.
(19) Liu, J.; Wei, W.; Zhao, T.; Liu, X.; Wu, J.; Yu, W.; Chang, J. J. Org.
Chem. 2016, 81, 9326.
(20) Risley, J. M.; Van Etten, R. L. Int. J. Chem. Kinet. 1984, 16, 1167.
(21) Issa, F.; Fischer, J.; Turner, P.; Coster, M. J. J. Org. Chem. 2006,
71, 4703.
(22) Heinicke, G. W.; Morella, A. M.; Orban, J.; Prager, R. H.; Ward,
A. D. Aust. J. Chem. 1985, 38, 1847.
(23) Gupta, V.; Yang, J.; Liebler, D. C.; Carroll, K. S. J. Am. Chem. Soc.
2017, 139, 5588.
(24) Simmons, E. M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2012, 51,
3066.
̈
̈
(25) Wurtz, S.; Rakshit, S.; Neumann, J. J.; Droge, T.; Glorius, F.
Angew. Chem., Int. Ed. 2008, 47, 7230.
(26) Maleckis, A.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2013,
135, 6618.
(27) Gray, A.; Tsybizova, A.; Roithova, J. Chem. Sci. 2015, 6, 5544.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental procedures and full analytical data (PDF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
J.E.G. acknowledges institutional support from the Office of the
Vice Chancellor for Research and Graduate Education at the
University of WisconsinMadison with funding from the
Wisconsin Alumni Research Foundation (WARF): UW2020
infrastructure grant (JEG, PI). This work made use of the
instrumentation at the UW−Madison Medicinal Chemistry
Center, funded by the UW School of Pharmacy.
REFERENCES
■
(1) Yanagihara, Y.; Kasai, H.; Kawashima, T.; Shida, T. Jpn. J.
Pharmacol. 1988, 48, 91.
(2) Sano, A.; Ishihara, M.; Yoshihara, J.; Sumino, M.; Nawa, H. Chem.
Pharm. Bull. 1995, 43, 683.
D
Org. Lett. XXXX, XXX, XXX−XXX