European Commission (COST D-17 Action) for support. We are
grateful to Prof. R. Welter and Dr A. DeCian (ULP Strasbourg)
forthecrystalstructuredeteminationsandtoProf.P.Hofmannand
Dr P. Deglmann (Heidelberg) for access to computing facilities.
Notes and references
§ All calculations were done using the program system TURBOMOLE.8a
If not mentioned explicitly otherwise, we used the DFT method with the
Becke–Perdew functional (BP86).8b The Coulomb terms were treated by
the RI-J approximation.8c For the structure optimizations we used SV(P)
basis sets8d (single zeta for core orbitals, double zeta for the valence shells
and one set of polarization functions for all centres except hydrogen).
Single point energies were calculated with larger triple zeta valence plus
polarization basis sets (TZVP).8e
" Crystal data for 1: C15H15N2PS, M = 286.32, monoclinic P21/c, a =
˚
15.5330(3), b = 11.8340(2), c = 16.1740(3) A, b = 105.3850(3)u, V =
3
2866.52(9) A , Z = 8, Dc = 1.327 g cm23, m(Mo-Ka) = 0.325 mm21
,
F(000) = 1200. A Nonius Kappa CCD diffractometer was employed for
˚
˚
the collection of 8350 unique reflections (Mo-Ka, l = 0.71073 A, T =
173 K). The structure was solved by direct methods and refined by a full
matrix least-squares technique based on F2 (SHELX977). The final R1 and
wR2 are 0.046 and 0.112, respectively, for 359 parameters and 5517
reflections [I . 2s(I)]. CCDC 601675. The same data collection and
refinement procedures were used for 2, 4?CHCl3 and 6?3CH2Cl2. Crystal
data for 2: C27H24N2P2S, M = 470.48, triclinic P-1, a = 9.1420(2),
Fig. 4 Views of the crystal structure of compound 6 in 6?3CH2Cl2.
Solvent molecules and OTf anions have been omitted for clarity. a)
Asymmetric unit (displacement parameters include 50% of the electron
density); b) two orthogonal projections of the polymer chain. Selected
˚
bond distances (A) and angles (u): Pt–N(4) 2.084(4), Pt–N(2) 2.096(4), Pt–
˚
b = 10.0760(2), c = 14.4330(4) A, a = 92.1400(9), b = 105.8700(9), c =
P(2) 2.2309(14), Pt–P(1) 2.2314(14), Ag(1)–N(3) 2.078(4), Ag(1)–N(1)
2.096(5), P(1)–N(1) 1.686(5), P(2)–N(3) 1.687(5), N(1)–C(1) 1.324(7),
N(2)–C(1) 1.307(7), N(4)–C(4) 1.319(7), N(3)–C(4) 1.339(7); N(4)–Pt–N(2)
100.04(18), N(4)–Pt–P(2) 80.95(13), N(2)–Pt–P(1) 80.49(13), P(2)–Pt–P(1)
98.51(5), N(3)–Ag–N(1) 172.08(19).
3
107.9900(12)u, V = 1205.47(5) A , Z = 2, Dc = 1.296 g cm23, m(Mo-Ka) =
˚
0.285 mm21, F(000) = 492. R1 and wR2 are 0.048 and 0.123, respectively,
for 289 parameters and 4950 reflections [I . 2s(I)] (7015 unique). CCDC
601676. For crystallographic data in CIF or other electronic format see
DOI: 10.1039/b603495k
I Crystal data for 4?CHCl3: C27H24Au2Cl2N2P2S?CHCl3, M = 1054.68,
triclinic P-1, a = 9.610(1), b = 13.281(2), c = 13.769(2) A, a = 98.04(5), b =
˚
coordination compounds in which the diphosphine 2 would act as
a bridging ligand.
3
23
˚
101.87(5), c = 104.52(5)u, V = 1630.5(4) A , Z = 2, Dc = 2.148 g cm
,
m(Mo-Ka) = 9.582 mm21, F(000) = 992. The final R1 and wR2 are 0.041
and 0.11, respectively, for 361 parameters and 7031 reflections [I . 2s(I)]
(9536 unique). CCDC 601677. For crystallographic data in CIF or other
electronic format see DOI: 10.1039/b603495k
Ligand 1 reacted with t-BuLi and [PtCl2(NCPh)2] in a 2 : 2 : 1
ratio to afford the bidentate metalloligand cis-[Pt(12H)2] (5) which,
upon reaction with AgOTf, yielded quantitatively the new
bimetallic, cationic coordination polymer [Ag‘[Pt(12H)2]‘](OTf)‘
(6, Scheme 2). Views of the molecular structure of 6?3CH2Cl2**
are depicted in Fig. 4.
** Crystal data for 6?3CH2Cl2: C30H28AgN4P2PtS?3CH2Cl2?CF3O3S, M =
˚
1277.43, monoclinic P21/n, a = 9.185(3), b = 19.488(6), c = 25.892(9) A,
3
b = 99.74(2)u, V = 4568(3) A , Z = 4, Dc = 1.858 g cm23, m(Mo-Ka) =
˚
4.097 mm21, F(000) = 2488. R1 and wR2 are 0.050 and 0.112, respectively,
for 514 parameters and 10225 reflections [I . 2s(I)] (13265 unique). CCDC
601678. For crystallographic data in CIF or other electronic format see
DOI: 10.1039/b603495k
The platinum coordination geometry is square planar, the four
L–Pt–L angles summing to 359.9(2)u, while the Ag atoms, which
are bound to the exocyclic N atoms of 5, adopt a slightly bent
geometry [N3–Ag–N1 172.08(19)u]. The CLN double bonds are
delocalized over the N1,C1,N2 and N3,C4,N4 atoms, respectively,
1 See e.g. (a) P. Braunstein, Chem. Rev., 2006, 106, 134; (b) P. Braunstein
and F. Naud, Angew. Chem., Int. Ed., 2001, 40, 680; (c) G. Helmchen and
A. Pfaltz, Acc. Chem. Res., 2000, 33, 336; (d) C. S. Slone,
D. A. Weinberger and C. A. Mirkin, Prog. Inorg. Chem., 1999, 48, 233.
2 Y. Xue, C. K. Kim, Y. Guo, D. Q. Xie and G. S. Yan, J. Comput.
Chem., 2005, 10, 994.
˚
the C–N distances ranging from 1.307(7) [N2–C1] to 1.339(7) A
[N3–C4].
The resulting infinite chains form a zig-zag and wave-like
arrangement (Fig. 4b); the silver atoms occupy the maximum and
3 H. L. Milton, M. V. Wheatley, A. M. Z. Slawin and J. D. Woollins,
Inorg. Chim. Acta, 2005, 358, 1393.
˚
theminimumpointsofthesinusoid,andareseparatedby9.899(3)A.
4 (a) M. Avalos, R. Babiano, P. Cintas, M. M. Chavero, F. J. Higes,
J. L. Jimenez, J. C. Palacios and G. Silvero, J. Org. Chem., 2000, 65,
8882; (b) G. Kaugars, S. E. Martin, S. J. Nelson and W. Watt,
Heterocycles, 1994, 12, 2593.
5 (a) N. V. Dubrovina, V. I. Tararov, Z. Kadyrova, A. Monsees and
A. Boerner, Synthesis, 2004, 12, 2047; (b) E. V. Bakhmutova, H. No¨th,
R. Contreras and B. Wrackmeyer, Z. Anorg. Allg. Chem., 2001, 627,
1846; (c) V. L. Foss, Y. A. Veits, T. E. Chernykh and I. F. Lutsenko, Zh.
Obshch. Khim., 1984, 54, 2670.
6 (a) P. Strickler, Helv. Chim. Acta, 1969, 52, 270; (b) I. B. Rother,
M. Willermann and B. Lippert, Supramol. Chem., 2002, 14, 189.
7 G. M. Sheldrick, SHELX-97, University of Go¨ttingen: Germany, 1997.
8 (a) R. Ahlrichs, M. Ba¨r, M. Ha¨ser, H. Horn and C. Ko¨lmel, Chem. Phys.
Lett., 1989, 162, 165; (b) A. D. Becke, Phys. Rev. A, 1988, 38, 3098; (c)
K. Eichkorn, O. Treutler, H. Ohm, M. Ha¨ser and R. Ahlrichs, Chem.
Phys. Lett., 1995, 240, 283; (d) A. Scha¨fer, H. Horn and R. Ahlrichs,
J. Chem. Phys., 1992, 97, 2571; (e) A. Scha¨fer, C. Huber and R. Ahlrichs,
J. Chem. Phys., 1994, 100, 5829.
To the best of our knowledge, only two examples of structurally
characterized Pt–Ag coordination polymers in which linear Ag
centres connect Pt metalloligands have been reported before.6
The full characterization of tautomers 1a,b and the intermediate
formation of the diphosphine ligand 2 in the course of their
synthesis emphasize the subtlety of the bonding in these systems
and are relevant to their use in coordination chemistry where ligand
interactions with one or many metal centres may profoundly affect
the nature of the reactive sites. Further studies with Cu(I), Ag(I)and
Au(I) are in progress to delineate the conditions for the formation
of new bimetallic coordination polymers.
We thank the Centre National de la Recherche Scientifique, the
Ministe`re de la Recherche, the French Embassy in Berlin and the
3100 | Chem. Commun., 2006, 3098–3100
This journal is ß The Royal Society of Chemistry 2006