C O M M U N I C A T I O N S
Table 2. Scope of Carbolithiationa
Table 3. Scope of Indole Synthesisa
yield
(%)
yield
entry
substrate
product
R1
R2
erb
entry
3
R1
R2
R3
(%)
erb
1
2
3
1a
1a
1b
4b
4c
4d
H
H
Etc
n-Hex
n-Bu
52
76
60
93:7
92:8
ndd
1
2
3
4
5
6
7
8
9
3a
3b
3c
3d
3e
3f
3g
3h
3i
H
H
H
H
H
H
H
n-Bu
n-Bu
n-Bu
n-Bu
n-Bu
Etd
n-Hex
n-Bu
n-Bu
H
60
30
38
51
45
40
58
43
31
92:8
93:7c
93:7
92:8
92:8
nde
92:8
93:7
92:8
CH3
Ph
COCH3
OCH3
a Conditions: (i) PhLi, rt, 15 min, cumene; (ii) R2Li, (-)-sparteine, -15
°C, 4 h; (iii) MeOH. b Determined by chiral HPLC. c Reaction with 5 equiv
of EtLi and (-)-sparteine. d Chiral HPLC separation was not achieved.
(CH2)3OH
H
H
H
OCH3
OCH3
to a racemic mixture generated using tetramethylethylenediamine
(TMEDA) as additive (Supporting Information). The absolute
configuration was assigned based upon the generation of (S)-3-
methyl heptanoic acid from 4a.9b,c
We next applied the reaction of 1a with ethyl- and n-hexyllithium
and found both generated the desired products 4b,c in good yields
with er’s of 93:7 and 92:8 (Table 2, entries 1 and 2). In addition,
we tested benzyl-(4-methoxy-2-propenylphenyl)amine 1b as a
starting substrate and found that it underwent efficient carbolithia-
tion with n-BuLi to provide 4d.
(CH2)3OH
a Conditions: (i) PhLi, rt, 15 min, cumene; (ii) R2Li, (-)-sparteine, -15
°C, 4 h; (iii) electrophile; (iv) 2 M HCl. b Determined using chiral HPLC.
c An increased er of 99:1 was obtained after one recrystallization from
pentane. d Reaction with 5 equiv of EtLi and (-)-sparteine. e Chiral HPLC
separation was not achieved.
high synthetic potential, which can then be converted into a range
of products simply by changing the electrophile. As organolithium
chemistry is ubiquitous in synthetic chemistry the applications of
this approach could be far-reaching.
To demonstrate the potential generality of this reaction, the
carbolithiation conditions were applied to a series of cascade
reactions utilizing different electrophiles (Scheme 2). The reaction
of 2a with DMF, Weinreb base N-methoxy-N-methyl acetamide,
benzonitrile, 2,2-diethoxypropionitrile,11 or γ-butyrolactone fol-
lowed by acidification gave rise to the 1,3- and 1,2,3-substituted
indoles 3a-e in acceptable yields, all with an er of 92:8 ((1%)
(Table 3, entries 1-5). The tolerance of the reaction sequence to
incorporation of functional groups by varying the electrophile is
exceptional with alkyl, aryl, keto, and alcohol groups being
successfully introduced at the C-2 position of the indole products.
We were pleased to discover that the indole cascade reaction
sequence was also successful with a variety of electrophiles for
ethyl- and n-hexylithium (entries 6 and 7) and the starting substrate
1b (entries 8 and 9).
Acknowledgment. This work was supported by Science Foun-
dation Ireland. A.-M.L.H. thanks IRCSET for funding.
Supporting Information Available: All experimental procedures,
compound characterization data, and NMR spectra. This material is
References
(1) (a) Bartlett, P. D.; Tauber, S. J.; Weber, W. P. J. Am. Chem. Soc. 1969,
91, 6362. (b) Wei, X.; Taylor, R. J. K. J. Chem. Soc., Chem. Commun.
1996, 187. (c) Wei, X.; Johnson, P.; Taylor, R. J. K. J. Chem. Soc., Perkin
Trans. 1 2000, 1109. (d) Clayden, J. Organolithiums: SelectiVity for
Synthesis; Pergamon Press: Oxford, U.K., 2002; pp 273-335.
(2) (a) Coleman, C. M.; O’Shea, D. F. J. Am. Chem. Soc. 2003, 125, 4054.
(b) Kessler, A.; Coleman, C. M.; Charoenying, P.; O’Shea, D. F. J. Org.
Chem. 2004, 69, 7836.
(3) Several natural products and medicinal applications of this structural class
are known: (a) Rawson, D. J.; Dack, K. N.; Dickinson, R. P.; James, K.
Bioorg. Med. Chem. Lett. 2002, 12, 125. (b) Chang-Fong, J.; Rangisetty,
J. B.; Dukat, M.; Setola, V.; Raffay, T.; Roth, B.; Glennon, R. Bioorg.
Med. Chem. Lett. 2004, 14, 1961. (c) Christian, O. E.; Compton, J.;
Christian, K. R.; Mooberry, S. L.; Valeriote, F. A.; Crews, P. J. Nat. Prod.
2005, 68, 1592.
In summary, our results exemplify the power of reversing the
order of bond formation, so that selectivity control is achieved in
the first step of the reaction to generate a chiral intermediate of
(4) Intramolecular asymmetric carbolithiation routes to indolines have been
described: (a) Bailey, W. F.; Mealy, M. J. J. Am. Chem. Soc. 2000, 122,
6787. (b) Gil, G. S.; Groth, U. M. J. Am. Chem. Soc. 2000, 122, 6789.
(5) Austin, J. F.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 1172.
(6) (a) Evans, D. A.; Scheidt, K. A.; Fandrick, K. R.; Lam, H. W.; Wu, J. J.
Am. Chem. Soc. 2003, 125, 10780. (b) Evans, D. A.; Fandrick, K. R.;
Song, H.-J. J. Am. Chem. Soc. 2005, 127, 8942.
Scheme 2. Synthetic Potential of Lithiated Intermediate 2
(7) Palomo, C.; Oiarbide, M.; Kardak, B. G.; Garcia, J. M.; Linden, A. J.
Am. Chem. Soc. 2005, 127, 4154.
(8) For reviews of (-)-sparteine in organolithium chemistry, see: (a) Beak,
P.; Basu, A.; Gallagher, D. J.; Park, Y. S.; Thayumanavan, S. Acc. Chem.
Res. 1996, 29, 2283. (b) Hoppe, D.; Hense, T. Angew. Chem., Int. Ed.
Engl. 1997, 36, 2282.
(9) (a) Klein, S.; Marek, I.; Poisson, J. F.; Normant, J. F. J. Am. Chem. Soc.
1995, 117, 8853. (b) Norsikian, S.; Marek, I.; Normant, J. F. Tetrahedron
Lett. 1997, 38, 7523. (c) Norsikian, S.; Marek, I.; Klein, S.; Poisson, J.
F.; Normant, J. F. Chem.sEur. J. 1999, 5, 2055.
(10) Phenyllithium ensured complete deprotonation prior to carbolithiation.
Cottineau, B.; O’Shea, D. F. Tetrahedron Lett. 2005, 46, 1935.
(11) Acetal protecting group was also removed during acidification step.
JA060076G
9
J. AM. CHEM. SOC. VOL. 128, NO. 32, 2006 10361