1 (a) A.-F. M. Rizk, in Naturally occurring pyrrolizidine alkaloids, ed.
A.-F. M. Rizk, CRC Press, Boca Raton, 1991, pp. 1–89; (b) S. G.
Pyne and M. Tang, Curr. Org. Chem., 2005, 9, 1393–1418. Detoxin A1:
(c) W.-R. Li, S.-Y. Han and M. M. Joullie´, Heterocycles, 1993, 36,
359–388. Anisomycin: (d) E. M. Rosser, S. Morton, K. S. Ashton,
P. Cohen and A. N Hulme, Org. Biomol. Chem., 2004, 2, 142–149.
2 Barnidipine: (a) K. Tamazawa, H. Arima, T. Kojima, Y. Isomura,
M. Okada, S. Fujita, T. Furuya, T. Takenaka, O. Inagaki and M. Terai,
J. Med. Chem., 1986, 29, 2504–2511. DX-9065a: (b) T. Nagahara,
Y. Yokoyama, K. Inamura, S. Katakura, S. Komoriya, H. Yamaguchi,
T. Hara and M. Iwamoto, J. Med. Chem., 1994, 37, 1200–1207.
3 Z. Li, H.-J. Feiten, D. Chang, W. A. Duetz, J. B. van Beilen and
B. Witholt, J. Org. Chem., 2001, 66, 8424–8430.
Table 3 Spiro- and fused-hydroxypyrrolidines 10 from epoxysulfo-
namides 9
Entry
1
Epoxide 9
Pyrrolidine 10
Yield (%)
81
2
3
69
66
4 For a review, see: (a) D. M. Flanagan and M. M. Joullie´, Heterocycles,
1987, 26, 2247–2265. For more recent selected approaches, see: (b)
Y. Tamaru, S. Kawamura, T. Bando, K. Tanaka, M. Hojo and
Z. Yoshida, J. Org. Chem., 1988, 53, 5491–5509; (c) S. E. Denmark and
M. E. Schnute, J. Org. Chem., 1994, 59, 4576–4595.
5 D. M. Hodgson, M. J. Fleming and S. J. Stanway, Org. Lett., 2005, 7,
3295–3298.
6 J. M. Schomaker, V. R. Pulgam and B. Borhan, J. Am. Chem. Soc.,
2004, 126, 13600–13601.
7 (a) E. J. Corey and M. Chaykovsky, J. Am. Chem. Soc., 1965, 87,
1353–1364. For a recent review of sulfur ylide chemistry, see: (b)
V. Aggarwal and J. Richardson, in Science of synthesis, ed. A. Padwa
and D. Bellus, Thieme, Stuttgart, 2004, vol. 27, pp. 21–104.
8 (a) K. Okuma, Y. Tanaka, S. Kaji and H. Ohta, J. Org. Chem., 1983,
48, 5133–5134; (b) A. O. Fitton, J. Hill, D. E. Jane and R. Millar,
Synthesis, 1987, 1140–1142.
9 The pKa of the trimethylsulfoxonium ion in DMSO at 25 uC is 18.2
(C. R. Johnson, in Comprehensive Organic Chemistry, ed. D. N. Jones,
Pergamon Press, Oxford, 1979, vol. 3, pp. 247–260).
10 U. K. Nadir, R. L. Sharma and V. K. Koul, J. Chem. Soc., Perkin
Trans. 1, 1991, 2015–2019.
11 (a) T. Ibuka, K. Nakai, H. Habashita, Y. Hotta, A. Otaka,
H. Tamamura, N. Fujii, N. Mimura, Y. Miwa, T. Taga, Y. Chounan
and Y. Yamamoto, J. Org. Chem., 1995, 60, 2044–2058; (b) T. Ibuka,
Chem. Soc. Rev., 1998, 27, 145–154.
Scheme 3 Preparation and determination of stereochemistry of trisub-
stituted hydroxypyrrolidine 12.
12 (a) A. H. Hoveyda, D. A. Evans and G. C. Fu, Chem. Rev., 1993, 93,
1307–1370; (b) P. O’Brien, A. C. Childs, G. J. Ensor, C. L. Hill,
J. P. Kirby, M. J. Dearden, S. J. Oxenford and C. M. Rosser, Org. Lett.,
2003, 5, 4955–4957.
13 J. U. Jeong, B. Tao, I. Sagasser, H. Henniges and K. B. Sharpless, J. Am.
Chem. Soc., 1998, 120, 6844–6845.
Notes and references
§ Typical procedure for synthesis of 3-hydroxypyrrolidines from epoxysulfo-
namides: n-BuLi (1.6 M in hexanes 0.38 mL, 0.61 mmol) was added
dropwise to a stirred suspension of Me3S(O)I (123 mg, 0.56 mmol) in THF
(1.4 mL) at 278 uC and stirred at this temperature for 15 min, and then at
0 uC for 15 min. The mixture was re-cooled to 278 uC and a solution of
anti-7a (0.19 mmol) in THF (0.5 mL) was added dropwise, followed by
DMPU (0.45 mL, 3.74 mmol) and the reaction then warmed to rt over
5 min and heated to reflux. After 2 h, 5% aq. NH4Cl (10 mL) and EtOAc
(10 mL) were added and the layers separated. The aqueous layer was
extracted with EtOAc (3 6 20 mL) and the combined organic layers were
dried (MgSO4) and evaporated under reduced pressure. The residue was
purified by column chromatography (60% Et2O in petrol) to give the
corresponding trans-8a (45 mg, 86%) as a colourless oil; Rf 0.18 (70% Et2O
in petrol); IR (neat)/cm21 3510br, 2960s, 1599s, 1494s, 1336s, 1156s; 1H
NMR (400 MHz) d 7.74 (d, J = 8 Hz, 2H), 7.31 (d, J = 8 Hz, 2H), 4.05 (d,
J = 3 Hz, 1H), 3.49–3.44 (m, 2H), 3.24 (ddd, J = 10.5, 9.5, 7 Hz, 1H), 2.41
(s, 3H), 2.06–1.97 (m, 1H), 1.77–1.67 (m, 3H), 1.50–1.33 (m, 2H), 1.26 (br,
1H), 0.94 (t, J = 7 Hz, 3H); 13C NMR (100 MHz) d 143.4, 134.2, 129.5,
127.7, 74.8, 69.1, 46.2, 37.3, 32.4, 21.5, 19.5, 14.0; MS m/z (CI) 301 (M +
14 Use of 5 equivalents of ylide 2 gave 3-hydroxypyrrolidine 8a in 13%
yield.
15 M. J. Fleming, D. Phil. thesis, University of Oxford, 2005.
16 During the preparation of this manuscript, the in situ process was
reported: R. A. Jones, J. M. Schomaker and B. Borhan, Ylide-mediated
expansion of 2,3-aziridin-1-ols to substituted pyrrolidines: Application
to the syntheses of pyrrolizidine alkaloids, Abstracts of Papers, 231st
ACS National Meeting, Atlanta, March 26–30, 2006, CHED-568.
17 Using Me3S(O)Cl as a source of ylide 2 under these conditions gave an
identical yield of 8a.
18 Crystallographic data for 8e: C17H18BrNO3S, Mr = 396.30, crystal size
0.04 6 0.04 6 0.20 mm, colourless needles, crystal system triclinic, a =
˚
7.4856(4), b = 9.7383(5), c = 11.5200(6) A, a = 95.766(2), b = 96.244(2),
c = 92.306(3)u, V = 829.49(8) A , Z = 2, Dc = 1.587 mg m23, F000 = 404,
3
˚
T = 150 K, space group P1, Z = 2, m = 2.617 mm21, 10663 reflections
¯
were measured, R = 0.0423, wR = 0.0507. CCDC 602881. For
crystallographic data in CIF or other electronic format see DOI:
10.1039/b606583j.
+
NH4 , 100), 284 (68), 130 (50), 48 (33), 86 (29), 72 (30); HRMS calcd for
+
C14H25N2O3S (M + NH4 ) 301.1586, found 301.1577.
3228 | Chem. Commun., 2006, 3226–3228
This journal is ß The Royal Society of Chemistry 2006