C O M M U N I C A T I O N S
Scheme 2
olefin cleavage (72%), Horner-Wittig homologation, and catalyzed
dihydrogenation (95% over two steps) afforded ester 19 with the
C5 tether correctly formatted for eventual lactamization. Biaryl bond
construction proceeded by regioselective pyrrole iodination (89%)4c
and ensuing Suzuki-Miyaura cross-coupling of iodide 20 with
N-Boc aniline boronic ester 21 using Buchwald’s SPhos ligand (2.5
mol % of Pd2(dba)3, 10 mol % of SPhos, K3PO4, aq THF) to afford
the 3-aryl pyrrole 22 (86%).14 Chemoselective ester saponification
and aniline N-deprotection (93% for two steps) preceded HATU-
mediated lactamization of the resulting amino acid to deliver 10-
(carbomethoxy)rhazinilam 23 (74% over three steps). Pyrrole
decarboxylation (NaOH; HCl, 50 °C) then provided synthetic (-)-
rhazinilam (2) in 96% yield (94% ee).
Asymmetric Au(I)-catalyzed pyrrole additions to enantioenriched
allenes afford a unique entry to optically active heterocycles.
Trisubstituted allenes provide convenient templates for heterocycle
annulation with concomitant asymmetric quaternary carbon con-
struction. An enantioselective total synthesis of (-)-rhazinilam
highlights the potential utility of this reaction technology in target-
oriented synthesis.
Scheme 3 a
Acknowledgment. Support from the National Institutes of
Health (R01 GM63151), the Bristol-Myers Squibb Foundation, and
the Merck Research Laboratories is gratefully acknowledged.
Supporting Information Available: Experimental procedures and
1
representative H and 13C spectra. This material is available free of
References
(1) (a) Trost, B. M. Acc. Chem. Res. 2002, 35, 695-705. (b) Rubin, M.;
Sromek, A. W.; Gevorgyan, V. Synlett 2003, 2265-2291. (c) Krause,
N., Hashmi, A. S. K., Eds. Modern Allene Chemistry; Wiley-VCH:
Weinheim, Germany, 2004. (d) Alonso, F.; Beletskaya, I. P.; Yus, M.
Chem. ReV. 2004, 104, 3079-3159.
a Conditions: (a) Cl3COCl; NaOMe; (b) (i) 10 mol % of OsO4, NMO
then NaIO4; (c) (i) Ph3PdCHCO2Me3; (ii) 10% Pd/C, H2, MeOH; (d) I2,
AgCO2CF3; (e) 2-C6H4(Bpin)NHBoc (21), 2.5 mol % of Pd2(dba)3, 10 mol
% of SPhos, K3PO4, aq THF; (f) (i) Ba(OH)2; (ii) TFA; (iii) HATU, iPr2NEt;
(g) (i) 50% NaOH; (ii) aq HCl.
(2) For recent reviews, see: (a) Hoffmann-Ro¨der, A.; Krause, N. Angew.
Chem., Int. Ed. 2002, 41, 2933-2935. (b) Sydnes, L. K. Chem. ReV. 2003,
103, 1133-1150. (c) Hoffmann-Ro¨der, A.; Krause, N. Angew. Chem.,
Int. Ed. 2004, 43, 1196-1216. (d) Ref 1c.
(3) Wan, Z.; Nelson, S. G. J. Am. Chem. Soc. 2000, 122, 10470-10471.
(4) Racemic syntheses: (a) Ratcliffe, A. H.; Smith, G. F.; Smith, G. N.
Tetrahedron Lett. 1973, 14, 5179-5184. (b) Magnus, P.; Rainey, T.
Tetrahedron 2001, 57, 8647-8651. (c) Banwell, M. G.; Edwards, A. J.;
Jolliffe, K. A.; Smith, J. A.; Hamel, E.; Verdier-Pinard, P. Org. Biomol.
Chem. 2003, 1, 296-305. (d) Bowie, A. L.; Hughes, C. C.; Trauner, D.
Org. Lett. 2005, 7, 5207-5209. Enantioselective syntheses: (e) Johnson,
J. A.; Li, N.; Sames, D. J. Am. Chem. Soc. 2002, 124, 6900-6903. (f)
Banwell, M. G.; Beck, D. A. S.; Willis, A. C. ARKIVOC 2006, 163-
174.
tone 14 was obtained in 99% ee (g98% de) from the alkaloid-
catalyzed propionyl chloride-2-pentynal AAC reaction (10 mol %
of O-trimethylsilylquinine (TMSQn), MgCl2, iPr2NEt).7 â-Lactone
ring opening with 8 provided allene 15 that was readily determined
to be a single diastereomer by 1H NMR (89%). To ensure that the
methyl-bearing stereocenter had no affect on annulation stereose-
lection, methyl ester 16 was subjected to Pd(II)-catalyzed cyclization
that, in accord with previous results, provided 17 as a 2:1 mixture
of diastereomers (83%).
Our success using Ag(I) catalysts to affect intramolecular car-
boxylic acid-allene additions led us to concentrate subsequent ca-
talyst screening on group 11 metal complexes.3 While Ag(I) com-
plexes proved completely ineffective as catalysts, reacting 16 with
AuCl3 (10 mol %) afforded bicyclic pyrrole 17 in 84% de, albeit
in a modest 27% yield.8 The putative cationic Au(III) complex
obtained using AgOTf as a co-catalyst with AuCl3 elicited a dra-
matic improvement in annulation efficiency, affording 17 in 82%
yield (84% de).9,10 Evaluating reaction efficiency as a function of
Au/Ag structure and stoichiometry revealed Ph3P‚AuOTf (5 mol
%)11 as the optimal annulation catalyst, providing tetrahydroin-
dolizine 17 with nearly complete translation of allene chirality (94%
de, 92%).12
(5) (a) Nelson, S. G.; Peelen, T. J.; Wan, Z. J. Am. Chem. Soc. 1999, 121,
9742-9743. (b) Nelson, S. G.; Wan, Z. Org. Lett. 2000, 2, 1883-1886.
(6) Grignard reagent 8 was prepared from the corresponding bromide: Dehaen,
W.; Hassner, A. J. Org. Chem. 1991, 56, 896-900.
(7) Zhu, C.; Shen, X.; Nelson, S. G. J. Am. Chem. Soc. 2004, 126, 5352-
5353.
(8) Reviews of Au-catalyzed addition reactions: (a) Hashmi, A. S. K. Gold
Bull. 2003, 36, 3-9. (b) Hashmi, A. S. K. Gold Bull. 2004, 37, 51-65.
(c) Arcadi, A.; Di Giuseppe, S. Curr. Org. Chem. 2004, 8, 795-812. (d)
Hoffmann-Ro¨der, A.; Krause, N. Org. Biomol. Chem. 2005, 3, 387-391.
(e) Hashmi, A. S. K. Angew. Chem., Int. Ed. 2005, 44, 6690-6693.
(9) For Au(III)-catalyzed allene-amine additions, see: Morita, N.; Krause,
N. Org. Lett. 2004, 6, 4121-4123.
(10) Selected recent examples of Au(I)/Au(III)-catalyzed addition reactions:
(a) Li, Z.; Shi, Z.; He, C. J. Organomet. Chem. 2005, 690, 5049-5054.
(b) Nair, V.; Abhilash, K. G.; Vidya, N. Org. Lett. 2005, 7, 5857-5859.
(c) Johannson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, F. D. J. Am.
Chem. Soc. 2005, 127, 18002-18003. (d) Zhang, J.; Yang, C.; He, C. J.
Am. Chem. Soc. 2006, 128, 1798-1799. (e) Arcadi, A.; Alfonsi, M.;
Bianchi, G.; D’Anniballe, G.; Marinelli, F. AdV. Synth. Catal. 2006, 348,
331-338.
(11) Preisenberger, M.; Schier, A.; Schmidbaur, H. J. Chem. Soc., Dalton Trans.
1999, 1645-1650.
(12) The absolute stereochemistry of 17 was confirmed by conversion to (-)-
rhazinilam (2).
Having addressed both tetrahydroindolizine construction and
quaternary carbon installation in preparing 17, introducing the C12
aniline moiety represented the only significant obstacle to complet-
ing the total synthesis. To circumvent difficulties associated with
heterocycle oxidation, pyrrole basicity was effectively attenuated
by regioselective carboxylation to provide 18 (99%).13 Oxidative
(13) Harbuck, J. W.; Rapoport, H. J. Org. Chem. 1972, 37, 3618-3622.
(14) Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am.
Chem. Soc. 2005, 127, 4685-4696.
JA0629110
9
J. AM. CHEM. SOC. VOL. 128, NO. 32, 2006 10353