Angewandte
Chemie
[10] T. Chang, A. M. Heiss, S. J. Cantrill, M. C. T. Fyfe, A. R. Pease,
S. J. Rowan, J. F. Stoddart, D. J. Williams, Org. Lett. 2000, 2,
2943 – 2946.
[11] A catenane comprises two or more interlocked rings: a) C. A.
Hunter, J. Am. Chem. Soc. 1992, 114, 5303 – 5311; b) W.-Q.
Deng, A. H. Flood, J. F. Stoddart, W. A. Goddard III, J. Am.
Chem. Soc. 2005, 127, 15994 – 15995.
Org. Chem. 2005, 70, 7956– 7962; e) C. D. Pentecost, A. J.
Peters, K. S. Chichak, G. W. V. Cave, S. J. Cantrill, J. F. Stoddart,
Angew. Chem. 2006, 118, 4205 – 4210; Angew. Chem. Int. Ed.
2006, 45, 4099 – 4104.
[21] Crystal data for [(DP24C8)2(LBT-H2)]: [C94H98F4N6O12]-
(PF6)2·2MeCN, Mr = 1951.83, monoclinic, P21/n (no. 14), a =
12.6367(14), b = 26.388(3), c = 15.594(2) , b = 111.060(8)8,
V= 4852.6(11) 3, Z = 2 (Ci symmetry), 1calcd = 1.336gcm ꢀ3
,
[12] A rotaxane is a molecule that comprises a dumbbell-shaped
component on which one or more rings are located because of
the bulkiness of the stoppers of the dumbbell: a) P.-L. Anelli, N.
Spencer, J. F. Stoddart, J. Am. Chem. Soc. 1991, 113, 5131 – 5133;
b) J. W. Choi, A. H. Flood, D. W. Steuerman, S. Nygaard, A. B.
Braunschweig, N. N. P. Moonen, B. W. Laursen, Y. Luo, E.
DeIonno, A. J. Peters, J. O. Jeppesen, K. Xe, J. F. Stoddart, J. R.
Heath, Chem. Eur. J. 2006, 12, 261 – 279; c) D. S. Marlin, D.
Gonzµlez Cabrera, D. A. Leigh, A. M. Z. Slawin, Angew. Chem.
2006, 118, 83 – 89; Angew. Chem. Int. Ed. 2006, 45, 77 – 83.
[13] “Carceplexes are comprised of host and guest components that
cannot separate from one another without the breaking of
covalent bonds. Their existence does not depend upon host–
guest interactions nor on other than gross size complementarity.
Rather their existence depends upon physical envelopment of
guests during shell closures leading to carceplexes.” This quote is
taken from D. J. Cram, J. M. Cram in Container Molecules and
Their Guests (Ed.: J. F. Stoddart), The Royal Society of
Chemistry, Cambridge, 1994, p. 147.
[14] The class of mechanically interlocked molecules we propose to
call suitanes differ from carceplexes in so far as their existence is
established by host–guest interactions during their template
formation. These interactions will normally live on in the
molecules afterwards, provided the recognition sites are not
switched off by some means or another. Herein, the recognition
in the form of noncovalent bonds would have their strength
considerably diminished and impaired by the addition of base.
[15] The synthesis of LBT-H2·2PF6 is reported in the Supporting
Information.
m(CuKa) = 1.222 mmꢀ1, T= 293 K, colorless prisms; 7207 inde-
pendent measured reflections, F2 refinement, R1 = 0.133, wR2 =
0.364, 2730 independent observed reflections (j Fo j > 4s(jFoj),
2qmax = 1208), 659 parameters.
[22] It should be noted that, in the solid-state superstructure, two co-
conformations of relative occupancies 0.65:0.35 were observed
for the DP24C8 rings, and the separations of the carbon atoms in
the 4-positions of the pyridine rings in the two different co-
conformations were 14.3 and 14.6, respectively; Figure 3
depicts the major conformer.
[23] Computations were performed using the program Maestro
v 3.0.038 with the AMBER* force-field and GB/SA solvent
model for CHCl3. Full details of computational procedures can
be found in the Supporting Information.
[24] a) J. N. K. Reek, A. H. Priem, H. Engelkamp, A. E. Rowan,
J. A. A. W. Elemans, R. J. M. Nolte, J. Am. Chem. Soc. 1997, 119,
9956– 9964; b) J. A. A. W. Elemans, M. B. Claase, P. P. M. Aarts,
A. E. Rowan, A. P. H. J. Schenning, R. J. M. Nolte, J. Org. Chem.
1999, 64, 7009 – 7016.
[25] a) C. W. Chen, H. W. Whitlock, J. Am. Chem. Soc. 1978, 100,
4921 – 4922; b) S. C. Zimmerman, Top. Curr. Chem. 1993, 165,
71 – 102; c) F.-G. Klärner, U. Burkert, M. Kamieth, R. Boese, J.
Benet-Buchholz, Chem. Eur. J. 1999, 5, 1700 – 1707.
[26] The [3]pseudorotaxane binding energy was taken as the differ-
ence in energy between the fully optimized structures of the
[3]pseudorotaxane and that of the fully separated LBT-H22+ and
two equivalents of (CHO)2-DP24C8. The binding energy of
suit[2]ane was taken as the difference in energy between the
fully optimized structures of the suit[2]ane and those of the fully
[16] The formation of the 2:1 complexes—or [3]pseudotoraxane—is
2+
separated LBT-H2 plus the tetraimine host.
+
ꢀ
ꢀ
assisted principally by N H···O hydrogen bonds and C H···O
[27] Crystal data for suit[2]ane: [C110H106F4N10O12](PF6)2·8Me2CO,
+
ꢀ
ꢀ
interactions between the CH2NH2 CH2 recognition sites on
Mr = 2590.61, monoclinic, P21/n (no. 14), a = 16.3400(3),
2+
the LBT-H2 dication and the matching dipyrido[24]crown-8
b = 21.1680(3),
c = 20.7430(4) ,
b = 110.5770(6)8,
V=
rings in (CHO)2-DP24C8. For reviews on the use of this
particular recognition motif as a template, see: a) P. T. Glink,
C. Schiavo, J. F. Stoddart, Chem. Commun. 1996, 1438 – 1490;
b) T. J. Hubin, A. G. Kolchinski, A. L. Vance, D. H. Busch, Adv.
Supramol. Chem. 1999, 6, 237 – 357; c) T. J. Hubin, D. H. Busch,
Coord. Chem. Rev. 2000, 200–2002, 5 – 52; d) S. J. Cantrill, A. R.
Pease, J. F. Stoddart, J. Chem. Soc. Dalton Trans. 2000, 3715 –
3734.
6717.0(2) 3, Z = 2, 1calcd = 1.281 gcmꢀ3, m(MoKa) = 0.123 mmꢀ1
T= 123 K, pale yellow plates; 12156independent measured
,
reflections, F2 refinement, R1 = 0.083, wR2 = 0.232, 7171 inde-
pendent observed absorption-corrected reflections (j Fo j > 4s-
(jFoj), 2qmax = 518), 837 parameters. CCDC-608949 ([(DP24C8)2-
(LBT-H2)]) and -608950 (suit[2]ane) contain the supplementary
crystallographic data for this paper. These data can be obtained
free of charge from The Cambridge Crystallographic Data
´
[17] B. H. Northrop, F. Aricó, N. Tangchiavang, J. D. Badjic, J. F.
Stoddart, Org. Lett. 2006, 8, 3899 – 3902.
[28] The four imine bonds in suit[2]ane constitute a fairly stable
entity. In principle, as we have shown with numerous other
polyimine macrocycles, it should be possible to reduce them with
reagents, such as BH3–THF or BH3–lutidine—and, in so doing,
fix the structure for all time in a kinetic regime.
[18] a) W. R. Layer, Chem. Rev. 1963, 63, 489 – 510; b) S. Dayagi, Y.
Degani in The Chemistry of the Carbon–Nitrogen Double Bond
(Ed.: S. Patai) Interscience, New York, 1970, pp. 6 4 – 83; c) I.
Huc, J.-M. Lehn, Proc. Natl. Acad. Sci. USA 1997, 94, 2106–
2110.
[29] a) D. H. Lee, J. R. Granja, J. A. Martinez, K. Severin, M. R.
Ghadiri, Nature 1996, 382, 525 – 528; b) B. Wang, I. O. Suther-
land, Chem. Commun. 1997, 1495 – 1496; c) V. C. Allen, D. Philp,
N. Spencer, Org. Lett. 2001, 3, 777 – 780; d) X. Li, J. Chimielew-
ski, J. Am. Chem. Soc. 2003, 125, 11820 – 11821; e) S. J. Howell,
N. Spencer, D. Philp, Org. Lett. 2002, 4, 273 – 276; f) R. J.
Pearson, E. Kassianidis, A. M. Z. Slawin, D. Philp, Org. Biomol.
Chem. 2004, 2, 3434 – 3441; g) E. Kassianidis, R. J. Pearson, D.
Philp, Org. Lett. 2005, 7, 3833 – 3836; h) S. J. Cantrill, R. H.
Grubbs, D. Lanari, K. C.-F. Leung, A. Nelson, K. G. Poulin-
Kerstein, S. P. Smidt, J. F. Stoddart, D. A. Tirrell, Org. Lett. 2005,
7, 4213 – 4216.
[19] S. J. Rowan, S. J. Cantrill, G. R. L. Cousins, J. K. M. Sanders, J. F.
Stoddart, Angew. Chem. 2002, 114, 938 – 993; Angew. Chem. Int.
Ed. 2002, 41, 898 – 952.
[20] This protocol has been honed to near perfection with the almost
quantitative self-assembly of nanoscale Borromean ring com-
pounds from 18 components by the template-directed formation
of 30 dative bonds and 12 imine bonds; see: a) K. S. Chichak, S. J.
Cantrill, A. R. Pease, S.-H. Chui, G. W. V. Cave, J. L. Atwood,
J. F. Stoddart, Science 2004, 304, 1308 – 1312; b) J. S. Siegel,
Science 2004, 304, 1256– 1258; c) C. A. Schalley, Angew. Chem.
2004, 116, 4499 – 4501; Angew. Chem. Int. Ed. 2004, 43, 4399 –
4401; d) K. S. Chichak, A. J. Peters, S. J. Cantrill, J. F. Stoddart, J.
Angew. Chem. Int. Ed. 2006, 45, 6665 –6669
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim