fluorine atoms producing significant changes in the physical,
chemical, and biological properties of molecules.2 Curiously,
although the Strecker-type reaction is extensively used in the
nonfluorinated series for the stereoselective synthesis of R-amino
acids,3 this strategy has been very rarely reported in the
fluorinated series.4,5 Different methods are known for the
stereoselective synthesis of trifluoromethyl 1,2-diamines,6 but
to our knowledge, their synthesis by reduction of R-trifluoro-
methyl R-amino nitriles has never been reported. In the course
of our studies, we have already reported that chiral trifluoro-
methyl iminiums are effective intermediates for the stereose-
lective synthesis of various R-trifluoromethylated amino
compounds.4a,7 We now report the straightforward synthesis of
enantiopure R-trifluoromethyl alanines, amino alcohols, and 1,2-
diamines from R-amino nitriles obtained by Strecker-type
reaction starting from chiral CF3 imines or oxazolidines.
The Strecker-type reaction from CF3 imines or iminium has
been mainly reported in the racemic series,8 and to our
knowledge, the synthesis of enantiopure R-amino nitriles through
resolution is not documented in the literature. In this work, we
first investigated the asymmetric Strecker-type reaction with
various chiral trifluoromethylated N-benzylimines (Table 1).
These diastereomerically pure (E)-imines were very conve-
niently prepared from trifluoroacetaldehyde hemiacetal or
trifluoromethyl ketones and (S)-R-methylbenzylamine or (R)-
phenylglycinol and derivatives. These chiral auxiliaries are
inexpensive and easily removable to get the target free amino
compounds. In all cases, the Strecker-type reaction with TMSCN
required a Lewis acid activation of the fluorinated aldimines or
ketimines to occur. The reaction was very efficiently promoted
in mild conditions with a catalytic amount of Yb(OTf)3, which
Concise Synthesis of Enantiopure
r-Trifluoromethyl Alanines, Diamines, and
Amino Alcohols via the Strecker-type Reaction
Florent Huguenot† and Thierry Brigaud*,‡
Laboratoire “Re´actions Se´lectiVes et Applications”, UMR CNRS
6519, UniVersite´ de Reims-Champagne-Ardenne, Faculte´ des
Sciences, BP 1039, 51687 Reims Cedex 2, France, and
Laboratoire “Synthe`se Organique Se´lectiVe et Chimie
Organome´tallique” (SOSCO), UMR CNRS 8123, UniVersite´ de
Cergy-Pontoise-5, Mail Gay-Lussac-NeuVille sur Oise, 95031
Cergy-Pontoise Cedex, France
ReceiVed April 12, 2006
Diastereomerically pure R-trifluoromethyl R-amino nitriles
obtained by Strecker-type reactions from chiral CF3 imines
and iminium proved to be very attractive versatile intermedi-
ates for the synthesis of various R-trifluoromethyl amino
compounds. From these synthons, both enantiomers of
R-trifluoromethyl alanine, trifluoromethyl 1,2-diamines, and
amino alcohols were conveniently obtained in enantiopure
form in high yields in a few steps.
(2) (a) Hiyama, T. Organofluorine Compounds, Chemistry and Applica-
tions; Yamamoto, H., Ed.; Springer-Verlag: Berlin, Heidelberg, 2000. (b)
Organofluorine Chemistry, Principles and Commercial Applications; Banks,
R. E., Smart, B. E., Tatlow, J. C., Eds.; Plenum: New York, 1994. (c)
Smart, B. E. J. Fluorine Chem. 2001, 109, 3-11. (d) O’Hagan, D.; Rzepa,
H. S. Chem. Commun. 1997, 645-652. (e) Schlosser, M. Angew. Chem.,
Int. Ed. 1998, 37, 1496-1513. (f) ChemBioChem 2004, 5, 557-726 (special
issue).
(3) (a) Ohfune, Y.; Shinada, T. Eur. J. Org. Chem. 2005, 5127-5143.
(b) Enders, D.; Shilvock, J. P. Chem. Soc. ReV. 2000, 29, 359-373. (c)
Groeger, H. Chem. ReV. 2003, 103, 2795-2827. (d) Duthaler, R. O.
Tetrahedron 1994, 50, 1539-650.
R-Trifluoromethyl R-amino acids (R-Tfm AAs), trifluoro-
methylated 1,2-amino alcohols, and 1,2-diamines are very
attractive target molecules for the design of biologically active
molecules.1 This is mainly due to the specific properties of
(4) For examples in the trifluoromethyl series, see: (a) Lebouvier, N.;
Laroche, C.; Huguenot, F.; Brigaud, T. Tetrahedron Lett. 2002, 43, 2827-
2830. (b) Wang, H.; Zhao, X.; Li, Y.; Lu, L. Org. Lett. 2006, 8, 1379-
1381.
(5) For examples in the difluoromethyl and monofluoromethyl series,
see: (a) Bravo, P.; Capelli, S.; Meille, S. V.; Seresini, P.; Volonterio, A.;
Zanda, M. Tetrahedron: Asymmetry 1996, 7, 2321-2332. (b) Schlosser,
M.; Brugger, N.; Schmidt, W.; Amrhein, N. Tetrahedron 2004, 60, 7731-
7742. (c) Davis, F. A.; Srirajan, V.; Titus, D. D. J. Org. Chem. 1999, 64,
6931-6934.
(6) (a) Yamauchi, Y.; Kawate, T.; Katagiri, T.; Uneyama, K. Tetrahedron
2003, 59, 9839-9847. (b) Katagiri, T.; Takahashi, M.; Fujiwara, Y.; Ihara,
H.; Uneyama, K. J. Org. Chem. 1999, 64, 7323-7329. (c) Molteni, M.;
Volonterio, A.; Zanda, M. Org. Lett. 2003, 5, 3887-3890. (d) Prakash, G.
K. S.; Mandal, M. J. Am. Chem. Soc. 2002, 124, 6538-6539.
(7) Huguenot, F.; Brigaud, T. J. Org. Chem. 2006, 71, 2159-2162.
(8) (a) Fuchigami, T.; Nakagawa, Y.; Nonaka, T. J. Org. Chem. 1987,
52, 5489-5491. (b) Fuchigami, T.; Ichikawa, S.; Konno, A. Chem. Lett.
1989, 1987-1988. (c) Yamasaki, Y.; Maekawa, T.; Ishihara, T.; Ando, T.
Chem. Lett. 1985, 1387-1390. (d) Xu, Y.; Dolbier, W. R., Jr. J. Org. Chem.
2000, 65, 2134-2137. (e) Koos, M.; Mosher, H. S. Tetrahedron 1993, 49,
1541-1546. (f) Dessipri, E.; Tirrell, D. A. Macromolecules 1994, 27, 5463-
5470. (g) Burger, K.; Huber, E.; Kahl, T.; Partscht, H.; Ganzer, M. Synthesis
1988, 44-49. (h) For recent examples in the asymmetric series, see ref 4.
* To whom correspondence should be addressed. Phone: + 33/(0)134257066.
Fax: + 33/(0)134257071.
† Universite´ de Reims-Champagne-Ardenne.
‡ Universite´ de Cergy-Pontoise.
(1) For review, see: (a) Qiu, X.-L.; Meng, W.-D.; Qing, F.-L. Tetrahe-
dron 2004, 60, 6711-6745 and references therein. (b) Sutherland, A.; Wilis,
C. L. Nat. Prod. Rep. 2000, 17, 621-631 and references therein. (c) Kukhar,
V. P.; Soloshonok, V. A. Fluorine Containing Amino Acids: Synthesis and
Properties; Wiley: New York, 1995. (d) Enantiocontrolled Synthesis of
Fluoro-Organic Compounds; Soloshonok, V. A., Ed.; Wiley: Chichester,
UK, 1999. (e) Asymmetric Fluoroorganic Chemistry: Synthesis, Applica-
tions, and Future Directions; Ramachandran, P. V., Ed.; ACS Symposium
Series 746; American Chemical Society: Washington, DC, 2000. (f)
Biomedical Frontiers of Fluorine Chemistry; Ojima, I., McCarthy, J. R.,
Welch, J. T., Eds.; American Chemical Society: Washington, DC, 1996.
(g) Jaeckel, C.; Koksch, B. Eur. J. Org. Chem. 2005, 4483-4503. (h) Yoder,
N. C.; Kumar, K. Chem. Soc. ReV. 2002, 31, 335-341. (i) Zanda, M. New
J. Chem. 2004, 28, 1401-1411. (j) Molteni, M.; Pesenti, C.; Sani, M.;
Volonterio, A.; Zanda, M. J. Fluorine Chem. 2004, 125, 1335-1743. (k)
Bravo, P.; Crucianelli, M.; Ono, T.; Zanda, M. J. Fluorine Chem. 1999,
112, 27-49. (l) Fustero, S.; Sanz-Cervera, J. F.; Piera, J.; Sanchez-Rosello,
M.; Chiva, G.; Simon-Fuentes, A. J. Fluorine Chem. 2004, 125, 621-627.
(m) Uneyama, K. J. Fluorine Chem. 1999, 97, 11-25. (n) Uneyama, K.;
Amii, H. J. Fluorine Chem. 2002, 114, 127-131.
10.1021/jo0607717 CCC: $33.50 © 2006 American Chemical Society
Published on Web 08/11/2006
J. Org. Chem. 2006, 71, 7075-7078
7075