Metal Butterflies on a Metallacarborane Scaffold. 2
Table 1. Analytical and Physical Data
Organometallics, Vol. 25, No. 19, 2006 4455
anal.c (%)
compd
color
yield/%a
12
ν
max(CO)b/cm-1
C
H
[1,4,7-{Cu(PPh3)}-1,5,6-{Re(CO)3}-4,5,6,7-(µ-H)4-
1,1-(CO)2-2-Ph-closo-1,2-IrCB9H5] (4a)
[1,3,6-{Cu2(PPh3)2}-3,6-(µ-H)2-1,1-(CO)2-2-Ph-
closo-1,2-IrCB9H7] (5a)
[1,3,6-{Cu2(PPh3)2}-3,6-(µ-H)2-1,1-(CO)2-2-Ph-
closo-1,2-RhCB9H7] (5b)
[8,9,10-endo-{Au(PPh3)}-3,4,8-exo-{Re(CO)3}-3,4-
(µ-H)2-8,8-(CO)2-7-Ph-nido-8,7-RhCB9H7] (6b)
[1,6-{Au2(PPh3)2}-6-(µ-H)-1,1-(CO)2-2-Ph-closo-
1,2-IrCB9H8] (7a)
[1,6-{Au2(PPh3)2}-6-(µ-H)-1,1-(CO)2-2-Ph-closo-
1,2-RhCB9H8] (7b)
[1,3,6-{Au2(PPh3)2Re(CO)3}-6-(µ-H)-1,1-(CO)2-
2-Ph-closo-1,2-IrCB9H7] (8a)
[1,3,6-{Au2(PPh3)2Re(CO)3}-6-(µ-H)-1,1-(CO)2-
2-Ph-closo-1,2-RhCB9H7] (8b)
[1,3-{Au3(PPh3)3}-1,1-(CO)2-2-Ph-closo-1,2-
IrCB9H8] (9a)
[1,3-{Au3(PPh3)3}-1,1-(CO)2-2-Ph-closo-1,2-
RhCB9H8] (9b)
pale yellow
2067 s, 2035 s, 2019 s,
1944 br s
2023 s, 1974 s
37.4 (37.8)d
3.5 (3.7)
yellow
orange
red-orange
yellow
orange
orange
red
41
22
9
48.2 (48.0)e
48.3 (48.0)f
33.0 (33.2)
39.1 (38.9)e
41.6 (41.6)e
35.1 (35.3)
36.2 (36.2)g
40.3 (40.3)g
42.9 (43.0)e
4.1 (4.0)
3.9 (4.1)
2.7 (2.7)
3.2 (3.2)
2.9 (3.4)
2.7 (2.7)
2.8 (2.8)
3.2 (3.2)
3.4 (3.4)
2021 s, 1960 s
2087 s, 2048 s, 2038 vs,
1943 br vs
2044 s, 2000 s
39
7
2053 s, 2011 s
16
7
2051 s, 2009 vs, 1929 s,
1915 br s
2058 s, 2013 vs, 1927 s,
1918 br s
2017 s, 1969 s
yellow
yellow
13
5
2027 s, 1983 s
a Yields based on available 2a or 2b (see text). b Measured in CH2Cl2; in addition, the spectra of all compounds show a broad, medium-intensity band
ca. 2500-2550 cm-1 due to B-H absorptions. c Calculated values are given in parentheses. d Cocrystallized with 1.0 molar equiv of C5H12. e Cocrystallized
with 0.5 molar equiv of CH2Cl2. f Cocrystallized with 2.0 molar equiv of CH2Cl2. g Cocrystallized with 1.0 molar equiv of CH2Cl2.
Table 2. 1H and 13C NMR Dataa
compd
1H/δ b
13C/δc
4a
7.59-7.48 (m, 17H, PPh and cage-C6H5),d 7.26 (m, 2H,
cage-C6H5), 7.22 (m, 1H, cage-C6H5), -6.73 (br q, J(BH) ≈
100, 1H, B-HFRe), -9.18 (br q, J(BH) ≈ 110, 1H, B-HFRe)
7.84 (m, 2H, cage-C6H5),d 7.45-7.12 (m, 33H, PPh and
cage-C6H5)
192.9, 192.5, 189.4 (Re-CO), 176.4, 168.0
(Ir-CO), 145.1, 134.1-128.9 (Ph), 47.8 (br, cage C)
5a
5b
6b
172.3 (CO), 149.1, 134.1-126.0 (Ph), 63.5
(br, cage C)
186.7 (br, CO), 149.3, 135.0-126.1 (Ph), 59.3
(br, cage C)
193.6, 192.8, 187.8 (Re-CO), 185.4 (d, J(RhC) )
71, Rh-CO), 179.9 (d, J(RhC) ) 70, Rh-CO),
149.4, 134.6-126.7 (Ph), 61.0 (br, cage C)
172.8 (CO), 148.4, 136.4-126.4 (Ph), 54.2
(br, cage C)
191.5 (d, J(RhC) ) 60, CO), 149.8, 134.6-126.2 (Ph),
74.5 (br, cage C)
198.0, 194.8, 192.6 (br × 3, Re-CO), 175.4, 171.0
(Ir-CO), 147.2, 135.4-126.8 (Ph), 56.1 (br, cage C)
197.1, 192.8, 190.4 (br × 3, Re-CO), 185.7, 182.2
(br × 2, Rh-CO), 147.7, 134.4-126.7 (Ph), 49.3
(br, cage C)
7.84 (m, 2H, cage-C6H5),d 7.51-7.33 (m, 30H, PPh),
7.27 (m, 2H, cage-C6H5), 7.15 (m, 1H, cage-C6H5)
7.62-7.51 (m, 16H, PPh and cage-C6H5), 7.45 (m, 2H,
cage-C6H5), 7.17 (m, 2H, cage-C6H5), -6.32 (br q, J(BH) ≈
100, 1H, B-HFRe), -7.14 (vbr q, J(BH) ≈ 100, 1H, B-HFRe)
7.93 (m, 2H, cage-C6H5),d 7.56-6.99 (m, 33H, PPh and
cage-C6H5)
7a
7b
8a
8b
7.84 (m, 2H, cage-C6H5),d 7.46-7.33 (m, 30H, PPh),
7.20 (m, 1H, cage-C6H5), 7.10 (m, 2H, cage-C6H5)
7.87 (m, 2H, cage-C6H5), 7.49-7.16 (m, 33H, PPh and
cage-C6H5), ca. -8.9 (vbr, 1H, B-HFRe)
7.88 (m, 2H, cage-C6H5), 7.48-7.18 (m, 33H, PPh and
cage-C6H5), ca. -7.9 (vbr, 1H, B-HFRe)
9a
9b
7.83 (m, 2H, cage-C6H5), 7.45-7.07 (m, 48H, PPh and
177.2 (CO), 150.4, 134.4-125.4 (Ph), 73.2 (br,
cage C)
cage-C6H5)
7.79 (m, 2H, cage-C6H5), 7.58-7.06 (m, 48H, PPh and
cage-C6H5)
182.5 (d, J(RhC) ) 54, CO), 149.7, 134.6-125.3
(Ph), 67.7 (br, cage C)e
a Chemical shifts (δ) in ppm, coupling constants (J) in hertz, measurements at ambient temperatures, except where indicated, in CD2Cl2. b Resonances for
terminal BH protons occur as broad unresolved signals in the range δ ca. -1 to +3. c 1H-decoupled chemical shifts are positive to high frequency of SiMe4.
d Signals for B-HFM′′ protons (M′′ ) Cu, Au) are not observed. e Tentative assignment.
reversibly undergo cage-closure reactions upon deprotonation.25
Similarly, closed-cage species are also found where the proton
is otherwise absent due to the presence instead of a boron-bound
two-electron-donor substituent.26 The proton so eliminated in
both types of complex occupied a bridging position in the open
face of the rhodathiaborane cluster, akin to the {Au(PPh3)}+
fragment in 6b: the gold-phosphine moiety is isolobal with
the proton,27 and hence a close parallel can be drawn between
the present case and the earlier rhodathiaboranes. In this respect,
the structure of compound 6b may also be compared with that
of [10,11-endo-{Au(PPh3)}-9-(η-C5H5)-nido-9,7,8-NiC2B8H10],
where the {Au(PPh3)} moiety also occupies an endo site over
the open face of an 11-vertex metallacarborane and of which
the {NiC2B8} core should also be closed (in electron-counting
terms) but has a nido structure.28 In the nickel system, however,
there is no Ni-Au bond (Ni‚‚‚Au > 3 Å), contrasting with the
Rh-Au connectivity present in compound 6b.
(23) (a) Ferguson, G.; Jennings, M. C.; Lough, A. J.; Coughlan, S.;
Spalding, T. R.; Kennedy, J. D.; Fontaine, X. L. R.; St´ıbr, B. J. Chem.
Soc., Chem. Commun. 1990, 891. (b) Adams, K. J.; McGrath, T. D.; Welch,
A. J. Acta Crystallogr. 1995, C51, 401. (c) Mac´ıas, R.; Rath, N. P.; Barton,
L. Organometallics 1999, 18, 3637.
(24) See also: Kennedy, J. D. In The Borane, Carborane, Carbocation
Continuum; Casanova, J., Ed.; Wiley: New York, 1998; p 85.
(25) Adams, K. J.; McGrath, T. D.; Thomas, Rh. Ll.; Weller, A. S.;
Welch, A. J. J. Organomet. Chem. 1997, 527, 283.
In addition to the “expected” trimetallic product exemplified
by 6b, the reactions of 2a and 2b with {Au(PPh3)}+ each also
(26) (a) Coughlan, S.; Spalding, T. R.; Ferguson, G.; Gallagher, J. F.;
Lough, A. J.; Fontaine, X. L. R.; Kennedy, J. D.; St´ıbr, B. J. Chem. Soc.,
Dalton Trans. 1992, 2865. (b) Volkov, O.; Mac´ıas, R.; Rath, N. P.; Barton,
L. J. Organomet. Chem. 2002, 657, 40.
(27) (a) Hoffmann, R. Angew. Chem., Int. Ed. Engl. 1982, 21, 711. (b)
Stone, F. G. A. Angew. Chem., Int. Ed. Engl. 1984, 23, 89.
(28) Barker, G. K.; Godfrey, N. R.; Green, M.; Parge, H. E.; Stone, F.
G. A.; Welch, A. J. J. Chem. Soc., Chem. Commun. 1983, 277.