2348
M. Sobkowski et al. / Tetrahedron: Asymmetry 18 (2007) 2336–2348
requiring the addition of <5 lL of reagents their 1 M solu-
Acknowledgements
tions in DCM or ACN were used.
The financial support from Polish Ministry of Science and
Higher Education and the Swedish Research Council, is
gratefully acknowledged.
The composition of the reaction mixtures in the early
stages of the fast reactions was determined by hydrolytic
quenching. To this end, after defined time periods 170 lL
aliquots of the reaction mixtures were taken and added
to 336 lL of ACN–pyridine–H2O, 300:18:18, and the
mixture was analyzed by 31P NMR spectroscopy.
References
1. Sobkowski, M.; Stawinski, J.; Kraszewski, A. Nucleosides
Nucleotides Nucleic Acids 2005, 24, 1301–1307.
2. Sobkowski, M.; Stawinski, J.; Kraszewski, A. Nucleosides
Nucleotides Nucleic Acids 2006, 25, 1363–1375.
3. Sobkowski, M.; Stawinski, J.; Kraszewski, A. Nucleosides
Nucleotides Nucleic Acids 2006, 25, 1377–1389.
4. Almer, H.; Stawinski, J.; Stro¨mberg, R.; Thelin, M. J. Org.
Chem. 1992, 57, 6163–6169.
4.5. General procedure for kinetic quenching experiments
The solution (0.3 mL) of intermediate 2 or 4 (0.5 mmol;
generated as described above) was added dropwise by a
syringe to a septum-sealed flask containing vigorously stir-
red alcohol (5 mL) and 2,6-lutidine (120 lL). After 5 min, a
sample of 0.5 mL was used for recording a 31P NMR spec-
trum. The remaining solution was concentrated under
reduced pressure (without heating), dissolved in DCM
(1 mL) and analyzed by 31P NMR spectroscopy.
5. Almer, H.; Stawinski, J.; Stro¨mberg, R. Nucleic Acids Res.
1996, 24, 3811–3820.
6. Sobkowski, M.; Jankowska, J.; Stawinski, J.; Kraszewski, A.
Nucleosides Nucleotides Nucleic Acids 2005, 24, 1033–1036.
7. Beak, P.; Anderson, D. R.; Curtis, M. D.; Laumer, J. M.;
Pippel, D. J.; Weisenburger, G. A. Acc. Chem. Res. 2000, 33,
715–727.
4.6. 50-O-Dimethoxytrityl-20-O-t-butyldimethylsilyl-uridin-
30-yl phosphorothioic–pivalic mixed anhydride
8. Faber, K. Chem. Eur. J 2001, 7, 5004–5010.
9. Trost, B. M.; Bunt, R. C.; Lemoine, R. C.; Calkins, T. L. J.
Am. Chem. Soc. 2000, 122, 5968–5976.
10. Westheimer, F. H. Acc. Chem. Res. 1968, 1, 70–78.
11. Seeman, J. I. Chem. Rev. 1983, 83, 83–134.
12. Jankowska, J.; Sobkowska, A.; Cieslak, J.; Sobkowski, M.;
Kraszewski, A.; Stawinski, J.; Shugar, D. J. Org. Chem. 1998,
63, 8150–8156.
13. Cieslak, J.; Szymczak, M.; Wenska, M.; Stawinski, J.;
Kraszewski, A. J. Chem. Soc., Perkin Trans. 1 1999, 3327–
3331.
To a stirred solution of 50-O-dimethoxytrityl-20-O-t-butyl-
dimethylsilyl- uridin-30-yl H-phosphonate (413 mg,
0.5 mmol) in DCM (5 mL) containing 2,6-lutidine
(120 lL) pivaloyl chloride (1.2 equiv, 0.6 mmol, 76 lL)
was added. After 5 min, elemental sulfur was added
(3 equiv, 1.5 mmol, 48 mg), optionally followed by triethyl-
amine (10% v/v). After 15 min 1 M TEAB buffer (pH 7.2)
was added and after work-up the organic layer was
collected and evaporated (TLC and 31P NMR analysis
indicated stability of the compound during work-up).
Attempted purification of the mixed anhydride on a
silica-gel column failed due to the decomposition of the
product. TLC (DCM–MeOH, 9:1 v/v): Rf 0.19; (DCM–
14. Stawinski, J.; Kraszewski, A. Acc. Chem. Res. 2002, 35, 952–
960.
15. Sobkowski, M.; Jankowska, J.; Stawinski, J.; Kraszewski, A.
Stereochemistry of internucleotide bond formation by the
H-phosphonate method. 2. Transesterification of aryl
ribonucleoside H-phosphonate diesters with alcohols. In
Collection Symposium Series; Hocek, M., Ed.; Institute of
Organic Chemistry and Biochemistry, Academy of Sciences
of the Czech Republic: Prague, 2005; Vol. 7, pp 183–187.
16. Sobkowski, M.; Jankowska, J.; Stawinski, J.; Kraszewski, A.
Nucleosides Nucleotides Nucleic Acids 2005, 24, 887–890.
17. Jankowska, J.; Sobkowski, M.; Stawinski, J.; Kraszewski, A.
Tetrahedron Lett. 1994, 35, 3355–3358.
MeOH, 8:2 v/v): Rf 0.54 (diastereomers not resolved); 31P
3
0
NMR (121 MHz, DCM): d 50.07 (d, JP;H3 ¼ 10:08 Hz),
3
0
51.23 (d, JP;H3 ¼ 11:91 Hz).
4.7. Adamantanecarboxylic acid, triethylammonium salt
18. Kers, A.; Kers, I.; Stawinski, J.; Sobkowski, M.; Kraszewski,
A. Synthesis 1995, 4, 427–430.
Adamantanecarboxylic acid (9.0 g, 50 mmol) and triethyl-
amine (7.7 mL, 55 mmol) were mixed together in ACN
(100 mL). The solvent was removed under reduced pressure
and the remaining residue was recrystallized from ACN to
yield white crystals (12.8 g; 91%). 1H NMR (300 MHz,
CDCl3): d 1.17 (t, J = 7.30 Hz, 9H, N+CH2CH3), 1.71
(m, 6H, adamantane), 1.90 (m, 6H, adamantane), 2.00
(m, 3H, adamantane), 2.95 (q, J = 7.29 Hz, 6H,
N+CH2CH3), 10.33 (br s, 1H, HN+).
19. Kers, A.; Kers, I.; Stawinski, J.; Sobkowski, M.; Kraszewski,
A. Tetrahedron 1996, 52, 9931–9944.
20. Loschner, T.; Engels, J. Tetrahedron Lett. 1989, 30, 5587–
5590.
21. Engels, J.; Jager, A. Angew. Chem. 1982, 94, 2010–2015.
22. Iyer, R. P.; Yu, D.; Ho, N. H.; Tan, W. T.; Agrawal, S.
Tetrahedron: Asymmetry 1995, 6, 1051–1054.
23. Oka, N.; Wada, T.; Saigo, K. J. Am. Chem. Soc. 2003, 125,
8307–8317.