1922
I. Yavari et al.
LETTER
(9) O’Brien, D.; Weaver, M. S.; Lidzey, D. G.; Bradley,
D. D. C. Appl. Phys. Lett. 1996, 69, 881.
(10) Bailly, C.; Echepare, S.; Gago, F.; Waring, M. Anti-Cancer
Drug Des. 1999, 14, 291.
ilar to those for 4a, except for the ester moieties, which
showed characteristic resonances in appropriate regions
of the spectra.
A tentative mechanism for this transformation is proposed
in Scheme 2. It is conceivable that the initial event is the
formation of intermediate 5 from 1 and the acetylenic es-
ter,18,19 which is converted to alkylidene quinoxaline 3.
Compound 3 is subsequently attacked by malonyl dichlo-
ride to produce 6. Intermediate 6 undergoes cyclization
reaction, HCl elimination, and keto–enol tautomerism to
generate compounds 4.
(11) Raw, S. A.; Wilfred, C. D.; Taylor, R. J. K. Chem. Commun.
2003, 18, 2286.
(12) Gilchrist, T. L. Heterocyclic Chemistry, 2nd ed.; Wiley and
Sons: New York, 1992, 272–276.
(13) Taylor, E. C.; Maryanoff, C. A.; Skotnickilc, J. S. J. Org.
Chem. 1980, 45, 2513.
(14) Yavari, I.; Souri, S.; Sirouspour, M. Synlett 2008, 1633.
(15) Yavari, I.; Souri, S. Synlett 2007, 2969.
(16) Yavari, I.; Souri, S. Synlett 2008, 1208.
(17) General Procedure for the Synthesis of Compounds 4
To a suspension of 3 (2 mmol)18 in CH2Cl2 (10 mL) was
added of malonyl dichloride (0.29 g, 2.1 mmol) at r.t. The
reaction mixture was then stirred for 15 min. The formed
precipitate was filtered off and washed with CH2Cl2 to afford
the pure product.
O
XH
X
O
OR
CO2R
CH2(COCl)2
1 + 2
H
N
H
N
H
CO2R
Compound 4a: pale yellow powder; mp 300–304 °C (dec.);
yield 0.56 g (98%). IR (KBr): nmax = 3450, 1729, 1693, 1655,
1490, 1418, 1365, 1306, 1258, 1106, 757 cm–1. 1H NMR
(500 MHz, CDCl3): d = 3.74 (3 H, s, OMe), 6.08 (1 H, s,
CH), 7.12 (1 H, d, 3J = 7.8 Hz, CH), 7.20 (1 H, t, 3J = 7.9 Hz,
CH), 7.30 (1 H, t, 3J = 8.0 Hz, CH), 9.19 (1 H, d, 3J = 7.8 Hz,
CH), 11.76 (1 H, s, OH), 11.84 (1 H, s, NH) ppm. 13C NMR
(125.7 MHz, CDCl3): d = 52.6 (OMe), 102.9 (CH), 112.4
(C), 116.4 (CH), 121.5 (CH), 122.8 (CH), 123.9 (C), 127.3
(CH), 128.1 (C), 133.0 (C), 156.2 (COH), 162.1 (CO), 162.9
(CO), 165.3 (CO2) ppm. MS: m/z (%) = 285 (20) [M – 1+],
262 (20), 236 (35), 179 (10), 123 (40), 97 (50), 83 (55), 69
(60), 57 (100), 43 (90). Anal. Calcd (%) for C14H10N2O5
(286.24): C, 58.75; H, 3.52; N, 9.79. Found: C, 58.60; H,
3.44; N, 9.65.
Compound 4d: pale yellow powder; mp 298–300 °C (dec.);
yield 0.55 g (97%). IR (KBr) nmax = 3505, 1764, 1721, 1661,
1618, 1499, 1408, 1333, 1304, 1294, 1106, 759 cm–1. 1H
NMR (500 MHz, CDCl3): d = 3.79 (3 H, s, OMe), 6.12 (1 H,
s, CH), 7.27 (1 H, t, 3J = 7.0 Hz, CH), 7.30 (1 H, d, 3J = 7.9
Hz, CH), 7.33 (1 H, t, 3J = 8.0 Hz, CH), 9.18 (1 H, d, 3J = 8.6
Hz, CH), 12.01 (1 H, s, OH) ppm.13C NMR (125.7 MHz,
CDCl3): d = 52.5 (OMe), 104.1 (CH), 114.8 (C), 116.8
(CH), 120.6 (CH), 123.1 (C), 124.3 (CH), 127.0 (CH), 127.9
(C), 141.1 (C), 154.2 (COH), 161.4 (CO), 161.5 (CO), 164.1
(CO2) ppm. Anal. Calcd (%) for C14H9NO6 (287.22): C,
58.54; H, 3.16; N, 4.88. Found: C, 58.60; H, 3.14; N, 4.85.
Compound 4g: yellow powder; mp 298–301 °C (dec.); yield
0.58 g (98%). IR (KBr) nmax = 3440, 1764, 1722, 1665, 1621,
1455, 1324, 1286, 1250, 1107, 765 cm–1. 1H NMR (500
MHz, CDCl3): d = 2.32 (3 H, s, Me), 3.78 (3 H, s, OMe),
6.10 (1 H, s, CH), 7.15 (1 H, d, 3J = 8.3 Hz, CH), 7.19 (1 H,
d, 3J = 8.3 Hz), 9.03 (1 H, s, CH), 11.99 (1 H, s, OH) ppm.
13C NMR (125.7 MHz, CDCl3): d = 20.9 (Me), 52.4 (OMe),
104.1 (CH), 114.8 (C), 116.5 (CH), 120.7 (CH), 122.6 (C),
127.4 (CH), 127.9 (C), 133.5 (C), 139.0 (C), 154.3 (C-OH),
161.3 (CO), 161.4 (CO), 164.1 (CO2) ppm. Anal. Calcd (%)
for C15H11NO6 (301.25): C, 59.81; H, 3.68; N, 4.65. Found:
C, 59.80; H, 3.65; N, 4.65.
5
3
X
O
O
X
O
O
– HCl
– HCl
CO2R
O
CO2R
O
N
H
4
N
H
Cl
Cl
Cl
6
7
Scheme 2
In conclusion, we have described a convenient route to
6,10-dioxo-6,10-dihydro-5H-pyrido[1,2-a]quinoxalines and
6,10-dioxo-6,10-dihydropyrido[2,1-c][1,4]benzoxazines
from malonyl dichloride and alkyl 2-[3,4-dihydro-3-oxo-
quinoxaline-2(1H)-ylidene]acetates or alkyl 2-[2-oxo-
2H-benzo[b][1,4]oxazin-3(4H)-ylidene]acetates in CH2Cl2
at room temperature. The advantage of the present proce-
dure is that the reaction is performed in the absence of
added base by simple mixing of the starting materials.
References and Notes
(1) Lindsley, C. W.; Zhao, Z.; Leister, W. H.; Robinson, R. G.;
Barnett, S. F.; Defeo-Jones, D.; Jones, R. E.; Hartman, G. D.;
Huff, J. R.; Huber, H. E.; Duggan, M. E. Bioorg. Med. Chem.
Lett. 2005, 15, 761.
(2) Loriga, M.; Piras, S.; Sanna, P.; Paglietti, G. Farmaco 1997,
52, 157.
(3) Seitz, L. E.; Suling, W. J.; Reynolds, R. C. J. Med. Chem.
2002, 45, 5604.
(4) He, W.; Meyers, M. R.; Hanney, B.; Spada, A.; Blider, G.;
Galzeinski, H.; Amin, D.; Needle, S.; Page, K.; Jayyosi, Z.;
Perrone, H. Bioorg. Med. Chem. Lett. 2003, 13, 3097.
(5) Kim, Y. B.; Kim, Y. H.; Park, J. Y.; Kim, S. K. Bioorg. Med.
Chem. Lett. 2004, 14, 541.
All other novel compounds isolated possessed spectroscopic
and analytical data in keeping with their proposed structures.
(18) Yavari, I.; Mirzaie, A.; Moradi, L. Helv. Chim. Acta 2006,
89, 2825.
(19) Yavari, I.; Shaabani, A.; Soliemani, H.; Nourmohammadian,
F.; Bijanzadeh, H. Magn. Reson. Chem. 1996, 34, 1003.
(20) Kappe, T.; Linnau, Y.; Stadlbauer, W. Monatsh. Chem.
1977, 108, 103.
(6) Sonawane, N. D.; Rangnekar, D. W. J. Heterocycl. Chem.
2002, 39, 303.
(7) Katoh, A.; Yoshida, T.; Ohkanda, J. Heterocycles 2000, 52,
911.
(8) Dailey, S.; Feast, J. W.; Peace, R. J.; Sage, I. C.; Till, S.;
Wood, E. L. J. Mater. Chem. 2001, 11, 2238.
Synlett 2009, No. 12, 1921–1922 © Thieme Stuttgart · New York