2622
X. Yang, P. Knochel
PRACTICAL SYNTHETIC PROCEDURES
13C NMR (75 MHz, CDCl3): d = 186.9, 156.5, 151.8, 139.7, 136.8,
136.6, 136.1, 135.0, 132.2, 131.9, 129.7, 127.8, 125.7, 125.1, 123.7,
115.2, 75.0.
J = 7.19 Hz, 2 H), 4.10–4.09 (t, J = 1.55 Hz, 2 H), 2.59–2.54 (t,
J = 7.35 Hz, 2 H), 1.71–1.61 (m, 2 H), 1.38–1.28 (m, 4 H), 1.31–
1.27 (t, J = 7.08 Hz, 3 H), 0.94–0.89 (t, J = 6.90 Hz, 3 H).
MS (EI, 70 eV): m/z (%) = 522 (20) [M+], 380 (41), 254 (55), 226
(17), 191 (23), 164 (20), 141 (32), 114 (30), 77 (100).
HRMS (EI): m/z [M+] calcd for C20H12ClIN2O3S: 521.9302; found:
521.9277.
13C NMR (75 MHz, CDCl3): d = 201.1, 167.2, 153.5, 141.1, 138.1,
129.6, 129.0, 127.2, 126.6, 125.4, 61.2, 45.3, 33.0, 31.8, 24.3, 22.9,
14.5, 14.3.
MS (EI, 70 eV): m/z (%) = 314 (13) [M+], 285 (10), 241 (100), 215
(30), 187 (18), 169 (11), 141 (13), 115 (10), 91 (4), 102 (2).
Ethyl [2-(6-Chloro-3-pyridinylcarbonyl)-1-(phenylsulfonyl)-
1H-indol-3-yl](oxo)acetate (7)
HRMS (EI): m/z [M+] calcd for C20H26O3: 314.1882; found:
314.1904.
To a suspension of CuCN (207 mg, 2.3 mmol) in anhyd THF (8 mL)
at –78 °C was added 1.5 M neophyllithium in Et2O (3.1 mL, 4.6
mmol) and the resulting mixture was stirred at r.t. for 15 min. The
resulting light yellow clear soln was cooled to –78 °C and a soln of
the iodoindole 6 (1.0 g, 1.92 mmol) in anhyd THF (6 mL) was added
via a cannula. The resulting mixture was stirred at –78 °C for 1 h.
Then, anhyd NMP (1 mL) and ethyl oxalyl chloride (685 mg, 5
mmol) in anhyd THF (6 mL) were added successively. The result-
ing mixture was stirred at r.t. for 1 h. The reaction was quenched
with sat. aq NH4Cl (10 mL) and the resulting mixture was poured
into H2O (30 mL). The aqueous phase was extracted with CH2Cl2
(3 × 20 mL) and the combined organic fractions were washed with
brine (30 mL), dried (Na2SO4), and concentrated in vacuo. Purifica-
tion by flash chromatography (n-pentane–Et2O, 2:1) gave 7 as white
solid; yield: 0.7 g (71%); mp 53 °C.
Acknowledgment
We thank the Fonds der Chemischen Industrie and the Ludwig-
Maximilians-University (Munich) for the financial support. We
thank the BASF AG (Ludwigshafen), Degussa (Hanau) and Cheme-
tall GmbH (Frankfurt) for the generous gift of chemicals.
References
(1) (a) Knochel, P. Handbook of Functionalized
Organometallics; Wiley-VCH: Weinheim, 2005.
(b) Knochel, P.; Millot, N.; Rodriguez, A. L.; Tucker, C. E.
Org. React. 2001, 58, 417. (c) Knochel, P.; Dohle, W.;
Gommermann, N.; Kneisel, F. F.; Kopp, F.; Korn, T.;
Sapountzis, I.; Vu, V. A. Angew. Chem. Int. Ed. 2003, 42,
4302.
IR (KBr): 3436 (vs), 1735 (s), 1677 (vs), 1582 (m), 1448 (w), 1380
(vs), 1365 (s), 1291 (m), 1152 (s), 1107 (s), 1040 (s), 952 (w) 753
(w), 684 (w), 569 cm–1 (m).
(2) (a) Sapountzis, I.; Knochel, P. Angew. Chem. Int. Ed. 2004,
43, 897. (b) Staubitz, A.; Dohle, W.; Knochel, P. Synthesis
2003, 233. (c) Thibonnet, J.; Knochel, P. Tetrahedron Lett.
2000, 41, 3319. (d) Rottländer, M.; Boymond, L.; Cahiez,
G.; Knochel, P. J. Org. Chem. 1999, 64, 1080. (e) Ren, H.;
Krasovskiy, A.; Knochel, P. Org. Lett. 2004, 6, 4215.
(f) Ren, H.; Krasovskiy, A.; Knochel, P. Chem. Commun.
2005, 543.
(3) For previous preparation of functionalized copper reagents,
see: (a) Corey, E. J.; Posner, G. H. J. Am. Chem. Soc. 1968,
90, 5615. (b) Kondo, Y.; Matsudaira, T.; Sato, J.; Muraka,
N.; Sakamoto, T. Angew. Chem. Int. Ed. 1996, 35, 736;
Angew. Chem., 1996, 108, 818. (c) Ebert, G. W.; Rieke, R.
D. J. Org. Chem. 1984, 49, 5281. (d) Rieke, R. D.;
Wehmeyer, R. H.; Wu, T. C.; Ebert, G. W. Tetrahedron
1989, 45, 443. (e) Ebert, G. W.; Cheasty, J. W.; Tehrani, S.
S.; Aouad, E. Organometallics 1992, 11, 1560. (f) Ebert, G.
W.; Pfennig, D. R.; Suchan, S. D.; Donovan, T. A.
Tetrahedron Lett. 1993, 34, 2279.
(4) (a) Piazza, C.; Knochel, P. Angew. Chem. Int. Ed. 2002, 41,
3263. (b) Yang, X.; Rotter, T.; Piazza, C.; Knochel, P. Org.
Lett. 2003, 5, 1229. (c) Yang, X.; Knochel, P. Synlett 2004,
81. (d) Yang, X.; Althammer, A.; Knochel, P. Org. Lett.
2004, 6, 1665. (e) Yang, X.; Knochel, P. Synlett 2004, 2303.
(5) For a chemoselective halogen–lithium exchange, see:
Kondo, Y.; Asai, M.; Uchiyama, T.; Sakamoto, T. Org. Lett.
2001, 3, 13.
(6) (a) Varchi, G.; Jensen, A. E.; Dohle, W.; Ricci, A.; Cahiez,
G.; Knochel, P. Synlett 2001, 477. (b) Abarbri, M.; Dehmel,
F.; Knochel, P. Tetrahedron Lett. 1999, 40, 7449. (c) Vu,
V. A.; Marek, I.; Polborn, K.; Knochel, P. Angew. Chem. Int.
Ed. 2002, 41, 351. (d) Trécourt, F.; Breton, G.; Bonnet, V.;
Mongin, F.; Marsais, F.; Quéguiner, G. Tetrahedron Lett.
1999, 40, 4339.
1H NMR (300 MHz, CDCl3): d = 8.76 (d, J = 2.1 Hz, 1 H), 8.04–
8.02 (dd, J = 8.35 Hz, J = 2.1 Hz, 1 H), 7.99–7.97 (d, J = 8.58 Hz,
1 H), 7.95–7.94 (d, J = 7.94 Hz, 1 H), 7.78–7.76 (d, J = 8.58 Hz, 2
H), 7.50–7.47 (t, J = 7.40 Hz, 1 H), 7.40–7.35 (m, 4 H), 7.32–7.30
(t, J = 7.15 Hz, 1 H), 4.12–4.08 (q, J = 6.91 Hz, 2 H), 1.18–1.15 (t,
J = 6.91 Hz, 3 H).
13C NMR (75 MHz, CDCl3): d = 186.6, 181.3, 163.0, 156.4, 151.1,
141.6, 139.1, 136.5, 135.6, 135.6, 132.8, 130.0, 128.0, 126.8, 126.6,
125.0, 123.1, 119.3, 114.8, 63.3, 14.2.
MS (EI, 70 eV): m/z (%) = 356 (8) [M – C6H3ClNO]+, 283 (100),
170 (11), 140 (15), 112 (9), 76 (4).
HRMS (FAB): m/z [M + H]+ calcd for C24H18ClN2O6S: 497.0574;
found: 497.0528.
Ethyl (E)-2-Methylene-6-oxo-4-phenyl-4-undecenoate (10)
To a suspension of CuCN (323 mg, 3.6 mmol) in anhyd THF (10
mL) at –78 °C was added 1.5 M neophyllithium in Et2O (4.8 mL,
7.2 mmol) and the resulting mixture was stirred at r.t. for 15 min.
The resulting light yellow clear soln was recooled to –100 °C and
was added via a cannula to a soln of the iodoenone 8 (1.0 g, 3.0
mmol) in anhyd THF (10 mL) at –100 °C. The resulting mixture
was stirred at this temperature for 5 min. Ethyl (bromomethyl)acry-
late (1.5 g, 8 mmol) was added successively and resulting mixture
was stirred at r.t. for 1 h. The mixture was quenched with sat. aq
NH4Cl (8 mL) and was poured into H2O (20 mL). The aqueous
phase was extracted with CH2Cl2 (3 × 20 mL) and the combined or-
ganic fractions were washed with brine (30 mL), dried (Na2SO4),
and concentrated in vacuo. Purification by flash chromatography
(n-pentane–Et2O, 8:1) gave the desired product 10 as a colorless oil;
yield: 0.77 g (82%).
IR (film): 3415 (w), 2957 (s), 2931 (s), 1714 (vs), 1686 (vs), 1601
(m), 1572 (m), 1446 (m), 1367 (m), 1247 (s), 1130 (s), 1075 (m),
951 (w), 761 (w), 697 cm–1 (m).
1H NMR (300 MHz, CDCl3): d = 7.49–7.46 (m, 2 H), 7.38–7.35 (m,
3 H), 6.67 (s, 1 H), 6.17–6.15 (dd, J = 2.65 Hz, J = 1.32 Hz, 1 H),
5.42–5.40 (dd, J = 3.00 Hz, J = 1.75 Hz, 1 H), 4.24–4.17 (q,
(7) This effect has been extensively used to perform ortho-
directed metalations: Snieckus, V. Chem. Rev. 1990, 90,
879.
Synthesis 2006, No. 15, 2618–2623 © Thieme Stuttgart · New York