Communications
[7] Addition of alcohols to enol ethers is proposed in the gold(I)-
catalyzed formation of ketals from alkynes: a) J. H. Teles, S.
Brode, M. Chabanas, Angew. Chem. 1998, 110, 1475; Angew.
Chem. Int. Ed. 1998, 37, 1415; ; b) S. Antoniotti, E. Genin, V.
Michelet, J.-P. GenÞt, J. Am. Chem. Soc. 2005, 127, 9976.
[8] For reaction of gold(I) complexes with enol ethers to generate
gold(I) enolates, see: a) A. N. Nesmeyanov, E. G. Perevalova,
K. I. Grandberg, V. P. Dyadchenko, Izv. Akad. Nauk SSSR Ser.
Khim. 1974, 2872; b) Y. Ito, M. Inouye, M. Suginome, M.
Murakami, J. Organomet. Chem. 1988, 342, C41; for related
reactions with PdII, see: Y. Ito, T. Hirao, T. Saegusa, J. Org.
Chem. 1978, 43, 1011.
nation of dimethylamine to generate pyridyl-fused product 41
in 60% yield.[16] The benzyl ether protecting group was
removed under conditions for transfer hydrogenation to
complete the asymmetric total synthesis of (+)-lycopladine A
(42) and thereby establish the absolute stereochemistry of this
alkaloid.
In summary a gold(I)-catalyzed addition of silyl enol
ethers to alkynes and allenes has been developed. The
reaction allows for the diastereoselective synthesis of a
variety of bicyclic frameworks containing all-carbon quater-
nary centers. Taken together, the gold(I)-catalyzed 5-exo-dig,
5-endo-dig, and 5-endo-trig pentannulation reactions provide
access to cyclopentenes with control of the position of the
double bond. The utility of these reactions was demonstrated
by an efficient total synthesis of (+)-lycopladine A (8 steps,
17% overall yield from enone 35) which takes advantage of
the orthogonal reactivity of the AuI and Pd0 centers towards
unsaturated iodides.[17] Further demonstration of the utility of
these cyclopentene annulation reactions, including additional
application to the fawcettimine alkaloids, is in progress and
will be reported in due course.
[9] For examples involving allene activation by AuI, see: a) L.
Zhang, J. Am. Chem. Soc. 2005, 127, 16804; b) A. W. Sromek, M.
Rubina, V. Gevorgyan, J. Am. Chem. Soc. 2005, 127, 10500; c) N.
Morita, N. Krause, Angew. Chem. 2006, 118, 1930; Angew. Chem.
Int. Ed. 2006, 45, 1897; .
[10] R. Benhida, P. Blanchard, J.-L. Fourrey, Tetrahedron Lett. 1998,
39, 6849.
[11] S. Chemler, D. Trauner, S. J. Danishefsky, Angew. Chem. 2001,
113, 4676; Angew. Chem. Int. Ed. 2001, 40, 4544.
[12] D. Caine, K. Procter, A. Cassell, J. Org. Chem. 1984, 49, 2647.
[13] J. Haruta, K. Nishi, S. Matsuda, S. Akai, Y. Tamaura, Y. Kita, J.
Org. Chem. 1990, 55, 4853; for the synthesis of the tributylalle-
nyltin reagent, see: Y. Ueno, M. Okawara, J. Am. Chem. Soc.
1979, 101, 1893.
Received: May 22, 2006
[14] H. Hofmeister, K. Annen, H. Laurent, R. Wiechert, Angew.
Chem. 1984, 96, 720; Angew. Chem. Int. Ed. Engl. 1984, 23, 727.
[15] B. B. Toure, D. G. Hall, J. Org. Chem. 2004, 69, 8429.
[16] For related pyridine syntheses, see: a) T. Hosokawa, N. Shimo,
K. Maeda, A. Sonoda, S.-I. Murahashi, Tetrahedron Lett. 1976,
383; b) W. Verboom, P. J. S. S. Van Eijk, P. G. M. Conti, D. N.
Reinhoudt, Tetrahedron 1989, 45, 3131; c) K. Tanaka, H. Mori,
M. Yamamoto, S. Katsumura, J. Org. Chem. 2001, 66, 3099.
[17] For additional applications of Au-catalyzed reactions in natural
product synthesis, see: a) J. Zhu, A. R. Germain, J. A. Porco, Jr.,
Angew. Chem. 2004, 116, 1259; Angew Chem. Int. Ed. 2004, 43,
1239; b) A. Fꢀrstner, P. Hannen, Chem. Commun. 2004, 2546;
c) K. Sato, N. Asao, Y. Yamamoto, J. Org. Chem. 2005, 70, 8981;
d) G. Dyker, D. Hildebrandt, J. Org. Chem. 2005, 70, 6093; e) A.
Fꢀrstner, P. Hannen, Chem. Eur. J. 2006, 12, 3006; f) C. Fehr, J.
Galindo, Angew. Chem. 2006, 118, 2967; Angew. Chem. Int. Ed.
2006, 45, 2901; g) A. S. K. Hashmi, L. Ding, J. W. Bats, P. Fischer,
W. Frey, Chem. Eur. J. 2003, 9, 4339.
Published online: August 4, 2006
Keywords: alkaloids · carbocyclization · gold ·
.
homogeneous catalysis · silyl enol ethers
[1] a) L. E. Overman, C. J. Douglas, Proc. Natl. Acad. Sci. USA
2004, 101, 5363; b) I. Denissova, L. Barriault, Tetrahedron 2003,
59, 10105; c) J. Christoffers, A. Mann, Angew. Chem. 2001, 113,
4725; Angew. Chem. Int. Ed. 2001, 40, 4591; d) E. J. Corey, A.
Guzman-Perez, Angew. Chem. 1998, 110, 402; Angew. Chem. Int.
Ed. 1998, 37, 388; e) K. Fuji, Chem. Rev. 1993, 93, 2037.
[2] a) J. J. Kennedy-Smith, S. T. Staben, F. D. Toste, J. Am. Chem.
Soc. 2004, 126, 4526; b) S. T. Staben, J. J. Kennedy-Smith, F. D.
Toste, Angew. Chem. 2004, 116, 5464; Angew. Chem. Int. Ed.
2004, 43, 5350.
[3] For transition-metal-promoted reactions of silyl enol ethers with
alkynes/allenes, see: a) J. Drouin, M. A. Boaventura, J.-M.
Conia, J. Am. Chem. Soc. 1985, 107, 1726; b) J. Drouin, M. A.
Boaventura, Tetrahedron Lett. 1987, 28, 3923; c) H. Huang, C.
Forsyth, J. Org. Chem. 1995, 60, 2773; d) K. Maeyama, N.
Iwasawa, J. Am. Chem. Soc. 1998, 120, 1928; e) K. Imamura, E.
Yoshikawa, V. Gevorgyan, Y. Yamamoto, Tetrahedron Lett.
1999, 40, 4081; f) N. Iwasawa, Maeyama, H. Kusama, Org. Lett.
2001, 3, 3871; g) N. Iwasawa, T. Miura, K. Kiyota, H. Kusama, K.
Lee, P. H. Lee, Org. Lett. 2002, 4, 4463; h) T. Miura, K. Kiyota,
H. Kusama, K. Lee, H. Kim, S. Kim, P. H. Lee, N. Iwasawa, Org.
Lett. 2003, 5, 1725.
[4] For gold-catalyzed reactions involving enol ethers, see: a) J. W.
Dankwardt, Tetrahedron Lett. 2001, 42, 5809; b) C. Nevado, D. J.
Cµrdenas, A. M. Echavarren, Chem. Eur. J. 2003, 9, 2627;
c) B. D. Sherry, F. D. Toste, J. Am. Chem. Soc. 2004, 126, 15978;
d) M. H. Suhre, M. Reif, S. F. Kirsch, Org. Lett. 2005, 7, 3925.
[5] K. Ishiuchi, T. Kubota, H. Morita, J. Kobayashi, Tetrahedron
Lett. 2006, 47, 3287.
[6] Hydrolysis of an enol acetate in the presence of gold(I) has been
proposed in gold-catalyzed reactions: a) X. Shi, D. J. Gorin, F. D.
Toste, J. Am. Chem. Soc. 2005, 127, 5802; b) L. Zhang, S. Wang, J.
Am. Chem. Soc. 2006, 128, 1442.
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 5991 –5994