and rotaxane 7 in organic solvents did not allow the
acquisition of 13C spectra. The position of the macrocycle
along the thread can be monitored by NMR spectroscopy
due to the anisotropy effect of the aromatic macrocycle over
the thread. In CDCl3 and THF-d8, protons K (the assignments
correspond to the lettering shown in Scheme 2) were shielded
by nearly 1.4 ppm relative to the thread, showing that the
macrocycle was located over the succinamide template11
(Figure 1). In DMSO-d6, the typical shielding of some
protons in the aliphatic region was expected due to the
location of the macrocycle over the alkyl chain. Surprisingly,
the protons associated with the aliphatic chain underwent
negligible shielding. Instead, the fulleropyrrolidine (D) and
adjacent protons (G and J) were shifted upfield by as much
as 0.8 ppm, which evidenced that the macrocycle was
preferentially located in that region. A progressive deshield-
ing of protons D, G, and J was observed together with the
increase of the temperature in 1H NMR spectra recorded in
DMSO-d6 up to 110 °C. Nevertheless, the rest of the signals
remained mainly unaltered, indicative of faster pirouetting
due to the higher temperatures.
The photophysical properties of thread 6 and rotaxane 7
were investigated by measurements centered on the fullerene
stopper, which showed the typical characteristics of fulle-
ropyrrolidines (see Supporting Information). However, al-
most identical features were observed for thread 6 and
rotaxane 7 in the ground- and excited-state spectra recorded
(9) Garaudee, S.; Silvi, S.; Venturi, M.; Credi, A.; Flood, A. H.; Stoddart,
J. F. ChemPhysChem 2005, 6, 2145-2152.
(10) Leigh, D. A.; Perez, E. M. Chem. Commun. 2004, 2262-2263.
(11) Alteri, A.; Gatti, F. G.; Kay, E. R.; Leigh, D. A.; Martel, D.;
Paolucci, F.; Slawin, A. M. Z.; Wong, J. K. Y. J. Am. Chem. Soc. 2003,
125, 8644-8654.
(12) Kihara, N.; Hashimoto, M.; Takata, T. Org. Lett. 2004, 6, 1693-
1696.
(13) Marlin, D. S.; Cabrera, D. G.; Leigh, D. A.; Slawin, A. M. Z. Angew.
Chem., Int. Ed. 2006, 45, 1385-1390.
(14) Vignon, S. A.; Jarrosson, T.; Iijima, T.; Tseng, H. R.; Sanders, J.
K. M.; Stoddart, J. F. J. Am. Chem. Soc. 2004, 126, 9884-9885.
(15) Laursen, B. W.; Nygaard, S.; Jeppesen, J. O.; Stoddart, J. F. Org.
Lett. 2004, 6, 4167-4170.
(16) Bottari, G.; Dehez, F.; Leigh, D. A.; Nash, P. J.; Perez, E. M.; Wong,
J. K. Y.; Zerbetto, F. Angew. Chem., Int. Ed. 2003, 42, 5886-5889.
(17) Bottari, G.; Leigh, D. A.; Perez, E. M. J. Am. Chem. Soc. 2003,
125, 13360-13361.
(18) Perez, E. M.; Dryden, D. T. F.; Leigh, D. A.; Teobaldi, G.; Zerbetto,
F. J. Am. Chem. Soc. 2004, 126, 12210-12211.
(19) Balzani, V.; Clemente-Leon, M.; Credi, A.; Ferrer, B.; Venturi, M.;
Flood, A. H.; Stoddart, J. F. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 1178-
1183.
1
Figure 1. 400 MHz H NMR spectra of (a) thread 6 in CDCl3,
(b) rotaxane 7 in CDCl3, (c) thread 6 in DMSO-d6, and (d) rotaxane
7 in DMSO-d6. The peaks highlighted with stars correspond to
residual solvent peaks.
in DCM, PhCN, and DMSO. Such observations suggest that
the macrocycle does not have a strong interaction with the
fulleropyrrolidine stopper.
The electrochemical properties of thread 6 and rotaxane
7 were investigated by cyclic voltammetry in THF as the
hydrogen-bonding phase and in DMSO as the hydrogen-bond
disrupting phase (see also Supporting Information). The
voltammograms displayed five waves that correspond to the
reduction of the fulleropyrrolidine stopper. The CV behavior
of rotaxane 7 differs from that of thread 6 for anodic shifts
of the half-wave potential values (E1/2) for the first three
cathodic processes (Table 1). In THF, E1/2 values of rotaxane
7 were slightly affected by the presence of the macrocycle,
by comparison with those of thread 6, revealing weak
interactions between the macrocycle and C60 that stabilizes
the electrogenerated fullerene anions. When the electro-
chemical measurements were carried out in DMSO, more
distinct shifts were observed, being especially substantial in
(20) Altieri, A.; Bottari, G.; Dehez, F.; Leigh, D. A.; Wong, J. K. Y.;
Zerbetto, F. Angew. Chem., Int. Ed. 2003, 42, 2296-2300.
(21) Brouwer, A. M.; Frochot, C.; Gatti, F. G.; Leigh, D. A.; Mottier,
L.; Paolucci, F.; Roffia, S.; Wurpel, G. W. H. Science 2001, 291, 2124-
2128.
(22) Echegoyen, L.; Echegoyen, L. E. Acc. Chem. Res. 1998, 31, 593-
601.
(23) Guldi, D. M.; Prato, M. Acc. Chem. Res. 2000, 33, 695-703.
(24) Mateo-Alonso, A.; Prato, A. M. Tetrahedron 2006, 62, 2003-2007.
(25) Mateo-Alonso, A.; Sooambar, C.; Prato, M. Org. Biomol. Chem.
2006, 4, 1629-1637.
(26) Kordatos, K.; Da Ros, T.; Bosi, S.; Va`zquez, E.; Bergamin, M.;
Cusan, C.; Pellarini, F.; Tomberli, V.; Baiti, B.; Pantarotto, D.; Georgakilas,
V.; Spalluto, G.; Prato, M. J. Org. Chem. 2001, 66, 4915-4920.
(27) Maggini, M.; Scorrano, G.; Prato, M. J. Am. Chem. Soc. 1993, 115,
9798-9799.
(28) Prato, M.; Maggini, M. Acc. Chem. Res. 1998, 31, 519-526.
(29) Tagmatarchis, N.; Prato, M. Synlett 2003, 768-779.
(30) Gatti, F. G.; Leigh, D. A.; Nepogodiev, S. A.; Slawin, A. M. Z.;
Teat, S. J.; Wong, J. K. Y. J. Am. Chem. Soc. 2001, 123, 5983-5989.
Org. Lett., Vol. 8, No. 22, 2006
5175