8. Connecting the two units of 8 with 5 was carried out in the
usual way with EDCI and HOBt to give 1.
We have demonstrated above the regulation of fullerene
complexation with receptor 1 through the structural constraints
The formation of the metal complex with Cu+ was achieved
by a simple mixing of 1 with one equivalent of [Cu+
induced by copper( ) complexation.
I
This work was supported by a Grant-in-Aid (12740348) for
Scientific Research from the Ministry of Education, Culture,
Sports, Science and Technology, Japan.
2
(MeCN)4]PF6 in dichloromethane. The resulting complex
[1·Cu+]PF62 is a brown solid. Complex [1·Cu+]PF6 showed
2
an absorption band at 370 nm in CHCl2CHCl2 while that of 1
appeared at 331nm. This characteristic red-shift indicates the
Notes and references
1 T. Nabeshima, Coord. Chem. Rev., 1996, 148, 151; J.-M. Lehn, Angew.
Chem., Int. Ed. Engl., 1990, 29, 1304; J. Rebek, Jr., Acc. Chem. Res.,
1984, 17, 258.
formation of the Cu( ) tetrahedral complex with the two
I
bipyridines. Further evidence was obtained by MALDI-TOF
mass spectrometry. The mass measurement of the complex gave
a peak attributable to the loss of counterion, [M-PF62]+{avg.
m/z = 1794 for [1·Cu+]}.
2 T. Nabeshima, A. Hashiguchi, S. Yazawa, T. Haruyama and Y. Yano, J.
Org. Chem., 1998, 63, 2788; I. Prévot-Halter, T. J. Smith and J. Weiss,
Tetrahedron Lett., 1996, 37, 1201; G. Deng, T. D. James and S. Shinkai,
J. Am. Chem. Soc., 1994, 116, 4567; M. Inouye, T. Konishi and K.
Isagawa, J. Am. Chem. Soc., 1993, 115, 8091; A. W. Schwabacher, J.
Lee and H. Lei, J. Am. Chem. Soc., 1992, 114, 7597; H.-J. Schneider and
F. Werner, Chem. Commun., 1992, 490; Y. Kobuke and Y. Satoh, J. Am.
Chem. Soc., 1992, 114, 789; Y. Kobuke, Y. Sumida, M. Hayashi and H.
Ogoshi, Angew. Chem., Int. Ed. Engl., 1991, 30, 1496; H.-J. Schneider
and D. Ruf, Angew. Chem., Int. Ed. Engl., 1990, 29, 1159; P. D. Beer
and A. S. Rothin, Chem. Commun., 1998, 52; A. W. Marverick, S. C.
Buckingham, Q. Yao, J. R. Bradbury and G. G. Stanley, J. Am. Chem.
Soc., 1986, 108, 7430.
3 J.-Y. Zheng, K. Tashiro, Y. Hirabayashi, K. Kinbara, K. Saigo, T. Aida,
S. Sakamoto and K. Yamaguchi, Angew. Chem., Int. Ed., 2001, 40,
1858; J. Wang, S. G. Bodige, W. H. Watson and C. D. Gutsche, J. Org.
Chem., 2000, 65, 8260; D. Sun, F. S. Tham, C. A. Reed, L. Chaker, M.
Burgess and P. D. W. Boyd, J. Am. Chem. Soc., 2000, 122, 10704; K.
Tashiro, T. Aida, J.-Y. Zheng, K. Kinbara, K. Saigo, S. Sakamoto and
K. Yamaguchi, J. Am. Chem. Soc., 1999, 121, 9477; A. Ikeda, M.
Yoshimura, H. Udzu, C. Fukuhara and S. Shinkai, J. Am. Chem. Soc.,
1999, 121, 4296; J. L. Atwood, L. J. Barbour, P. J. Nichols, C. L. Raston
and C. A. Sandoval, Chem. Eur. J., 1999, 5, 990; M. J. Hardie and C. L.
Raston, Chem. Commun., 1999, 1153; H. Matsubara, A. Hasegawa, K.
Shiwaku, K. Asano, M. Uno, S. Takahashi and K. Yamamoto, Chem.
Lett., 1998, 923; H. Matsubara, T. Shimura, A. Hasegawa, M. Semba, K.
Asano and K. Yamamoto, Chem. Lett., 1998, 1099; K. Tsubaki, K.
Takayoshi, T. Kinoshita and K. Fuji, Chem. Commun., 1998, 895; A.
Ikeda, M. Yoshimura and S. Shinkai, Tetrahedron Lett., 1997, 38, 2107;
N. S. Isaacs, P. J. Nicholls, C. L. Raston, C. A. Sandova and D. J. Young,
Chem. Commun., 1997, 1839; A. Drljaca, C. Kepert, L. Spiccia, C. L.
Raston, C. A. Sandoval and T. D. Smith, Chem. Commun., 1997, 195;
T. Andersson, G. Westman, G. Stenhagen, M. Sundahl and O.
Wennerström, Tetrahedron Lett., 1995, 36, 597; J. L. Atwood, G. A.
Koutsantonis and C. L. Raston, Nature, 1994, 368, 229; T. Suzuki, K.
Nakashima and S. Shinkai, Chem. Lett., 1994, 699; Z. yoshida, H.
Takekuma, S. Takekuma and Y. Matsubara, Angew. Chem., Int. Ed.
Engl., 1994, 33, 1597.
To study the binding properties of 1 and [1·Cu+]PF6 for
60 or C70 (Fig. 2), titration experiments were carried out by
2
C
UV-vis spectrometry in CHCl2CHCl2. The stoichiometry of
receptor 1 to C60 and C70 was established by Job’s plot. The
binding constants of the receptor with and without Cu+ for C60
or C70 were determined by the Benesi-Hildebrand method
(Table 1). Metal-induced regulations were observed. Receptor 1
showed 1+2 binding to C60 while Cu+ drove the complexation in
a 1+1 fashion. In contrast, C70 bound to 1, resulting in a 1+1
complex in the presence and absence of Cu+. Allosteric
regulation was seen in C70 binding, which was enhanced by Cu+
complexation. These characteristic changes of the binding
ability through the metal complexation are rationalized by the
internal flexibility.
The linker moiety of 1 is highly flexible. The entropic cost on
the internal flexibility is too high to form the 1+1 complex with
C60, and leads the low binding ability toward C70. The metal
complexation to the bipyridine units fixes the flexible chain to
overcome the high entropic cost. Hence, the fixation brings
about the regulation of the guest binding; the change of the
binding mode and the enhancement of the binding ability.
Complex [1·Cu+]PF6 preferentially binds (4-fold excess)
60 to C70. The selectivity of the guest binding can be explained
2
C
by the difference of the guest volumes: C60; 510 Å3, C70; 600
Å3. While the cavity volume8 of the receptor (591 Å3, estimated
by MacroModel9 using AMBER* force field) fits well to that of
C60, the volume of the larger guest exceeds that of the host
cavity. Of course the cavity can be expanded to some extent to
accommodate the larger guest, the resulting deformation of the
receptor causing extra strain because of the rigid nature of the
metal complexed receptor.10
Table 1 Binding constants (M21) of 1 and [1·Cu+]PF62 for C60 and C70 at
rt in CHCl2CHCl2. a) Binding constant of calix[5]arene 94a,7
4 T. Haino, H. Araki, Y. Yamanaka and Y. Fukazawa, Tetrahedron Lett.,
2001, 42, 3203; M. Yanase, M. Matsuoka, Y. Tatsumi, M. Suzuki, H.
Iwamoto, H. Haino and Y. Fukazawa, Tetrahedron Lett., 2000, 41, 493;
M. Yanase, T. Haino and Y. Fukazawa, Tetrahedron Lett., 1999, 40,
2781; T. Haino, M. Yanase and Y. Fukazawa, Angew. Chem., Int. Ed.
Engl., 1998, 37, 997; T. Haino, M. Yanase and Y. Fukazawa,
Tetrahedron Lett., 1997, 38, 3739; T. Haino, M. Yanase and Y.
Fukazawa, Angew. Chem., Int. Ed. Engl., 1997, 36, 259.
2
1
[1·Cu+]PF6
C60
C70
98 2a
250 20
3800 300
950 50
5 G. Zhang, Y. Shi, R. Mosi, T. Ho and P. Wan, Can. J. Chem., 1994, 72,
2388.
6 K. No and K. M. Kwon, Synthesis, 1996, 1293.
7 The binding constants, K1 and K2, in the 2+1 complex formation
between 1 and C60 could not be directly determined due to the quality of
the titration data. In place of these, the binding constant of calix[5]arene
9 was listed in Table 1.
8 B. C. Hamann, K. D. Shimizu and J. Rebek, Jr., Angew. Chem.,Int. Ed.
Engl., 1996, 35, 1326.
9 F. Mohamadi, N. G. J. Richards, W. C. Guida, R. Liskamp, M. Lipton,
C. Caufield, G. Chang, T. Hendrickson and W. C. Still, J. Comp. Chem.,
1990, 11, 440.
10 T. Haino, K. Nitta and Y. Fukazawa, Tetrahedron Lett., 2000, 41, 4139;
T. Szabo, B. M. OALeary and J. Rebek, Jr., Angew. Chem., Int. Ed., 1998,
37, 3410.
Fig. 2 The calculated structure of the complex 1·Cu+ with C60 (purple).
CHEM. COMMUN., 2002, 402–403
403