Photochemical Reaction of PCT
J. Phys. Chem. B, Vol. 114, No. 45, 2010 14239
photoexcitation dynamics proposed in Figure 10, the concentra-
tion of the excited states of trans and cis PCT in the crystal
also follows the two-exponential decay functions, pointing out
that the photodynamic model is relevant, although we could
not calculate the rate constant of each reaction.
intermolecular coupling, leading to the modification of the
center-to-center distance between the ethylenic CdC bonds
favorable for the [2 + 2] photocyclodimer.
Acknowledgment. Financial support provided by the Japan
Society for the Promotion of Science (JSPS) for a research
fellowship in Osaka University to A.U., by the Grant-in-Aid
for Scientific Research (KAKENHI No. 19049011) to T.A., by
the Grant-in-Aid for Scientific Research (KAKENHI No.
18106002) to H.M., by the MOE-ATU Project (National Chiao
Tung University) of the Ministry of Education, Taiwan, to H.M.,
and by the National Science Council of Taiwan (No. 0970027441)
to H.M. is gratefully acknowledged.
In the above proposed photochromic reaction, the cis pho-
toproduct state undergoes a backward reaction to the trans form
upon visible light irradiation. We believe that both forward and
backward photoisomerizations proceed under the condition in
which the crystal lattice is distorted, since the original lattice
must have been broken by the first UV irradiation. This is in
contrast to the uniform photochromism,2,23 photocyclodimer-
ization,41 or photopolymerization,39,56 in which these topochemi-
cal reactions occur in a single-crystal-to-single-crystal trans-
formation with the original crystal lattice being almost unchanged
throughout the photoreaction.57 For the PCT crystal, the lattice
deformation, the dynamic voids, and the coexistences of two
or more structures in its single bulk crystal after UV irradiation
are the reasons for the fractures on the crystal surface and for
the difficulty to solve its crystal structure. The powder X-ray
diffraction pattern for PCT crystals after UV irradiation,
however, does not show a new diffraction peak compared to
that before irradiation, regardless of some differences in
diffraction peak intensities (data not shown). This finding is an
indication that the cis isomer does not form a new crystal lattice.
The formation of the cis isomer in the crystal, to some extent,
is important, since there are only a few examples of chro-
mophores showing photochromism in the crystalline state due
to the fact that the chromophores have unstable photoproduct
isomers.2,22,27–29,55
Supporting Information Available: Detailed information
on X-ray structural determination, bond lengths, bond angles,
intermolecular interactions, and an X-ray crystallographic file
in CIF format. This material is available free of charge via the
References and Notes
(1) Tamai, N.; Miyasaka, H. Chem. ReV. 2000, 100, 1875–1890.
(2) Irie, M. Chem. ReV. 2000, 100, 1685–1716.
(3) Hadjoudis, E.; Mavridis, I. M. Chem. Soc. ReV. 2004, 33, 579–
588.
(4) Wilkinson, F.; Worrall, D. R.; Hobley, J.; Jansen, L.; Williams,
S. L.; Langley, A. J.; Matusek, P. J. Chem. Soc., Faraday Trans. 1996, 92,
1131–1136.
(5) Irie, M.; Tamaki, T.; Seki, T.; Hibino, J. Photochromic Spiropyrans,
Organic Electronic Materials 8, Bunshin-Suppan, 1993.
(6) Hellingwerf, K. J. J. Photochem. Photobiol., B 2000, 54, 94–102.
(7) Cusanovich, M. A.; Meyer, T. E. Biochemistry 2003, 42, 4759–
4770.
(8) Hellingwerf, K. J.; Hendriks, J.; Gensch, T. J. Phys. Chem. A 2003,
107, 1082–1094.
(9) Kim, M.; Mathies, R. A.; Hoff, W. D.; Hellingwerf, K. J.
Biochemistry 1995, 34, 12669–12672.
(10) Changenet-Barret, P.; Espagne, A.; Katsonis, N.; Charier, S.;
Baudin, J.-B.; Julien, L.; Plaza, P.; Martin, M. M. Chem. Phys. Lett. 2002,
365, 285–291.
(11) Changenet-Barret, P.; Espagne, A.; Plaza, P.; Hellingwerf, K. J.;
Martin, M. M. New J. Chem. 2005, 29, 527–534.
(12) Changenet-Barret, P.; Espagne, A.; Charier, S.; Baudin, J.-B.; Julien,
L.; Plaza, P.; Hellingwerf, K. J.; Martin, M. M. Photochem. Photobiol. Sci.
2004, 3, 823–829.
(13) Espagne, A.; Changenet-Barret, P.; Plaza, P.; Martin, M. M. J. Phys.
Chem. A 2006, 110, 3393–3404.
(14) Espagne, A.; Changenet-Barret, P.; Baudin, J.-B.; Plaza, P.; Martin,
M. M. J. Photochem. Photobiol., A 2007, 185, 245–252.
(15) Larsen, D. S.; Vengris, M.; van Stokkum, I. H. M.; van der Horst,
M. A.; Cordfunke, R. A.; Hellingwerf, K. J.; van Grondelle, R. Chem. Phys.
Lett. 2003, 369, 563–569.
4.5. The Structure of the cis PCT Isomer. It would be
interesting to evaluate the structure of the cis PCT. It is useful
to recall that the marker band of the phenol group is only slightly
shifted from 1513 to 1517 cm-1 for the νPhOH(19a) +
δCH(18a) mode and from 1169 to 1178 cm-1 for the δCH(9a)
+ δOH mode, revealing that the cis isomer remains unambigu-
ously in the protonated state. Interestingly, the latter band is
similar to the protonated cis p-hydroxycinnamic thioester in PYP
at 1174 cm-1 45
We also recall that the cis PCT has a 12 nm
.
red-shift in diffuse-reflectance spectrum from the trans form,
as shown in Figure 6. The absorption spectrum of the depro-
tonated cis chromophore in PYP (λmax ) 465 nm), which is a
nonrelaxed geometry with a rotated ethylenic group,35,36 is red-
shifted by 17 nm from the ground state trans configuration (λmax
) 448 nm). From the similar vibrational mode and electronic
structure, it might be reasonable to speculate that the cis PCT
configuration may adopt a nonrelaxed geometry with a rotated
ethylenic group.
(16) Larsen, D. S.; van Grondelle, R. ChemPhysChem 2005, 6, 828–
837.
(17) Usman, A.; Mohammed, O. F.; Heyne, K.; Dreyer, J.; Nibbering,
E. T. J. Chem. Phys. Lett. 2005, 401, 157–163.
(18) Mohammed, O. F.; Heyne, K.; Usman, A.; Dreyer, J.; Nibbering,
E. T. J.; Cusanovich, M. A. Ultrafast Phenomena XV; Springer Series
Chemical Physics; Springer: Berlin, 2006; pp 453-455.
(19) Changenet-Barret, P.; Plaza, P.; Martin, M. M.; Chosrowjan, H.;
Taniguchi, S.; Mataga, N.; Imamoto, Y.; Kataoka, M. J. Phys. Chem. C
2009, 113, 11605–11613.
(20) Usman, A.; Masuhara, H.; Asahi, T. J. Phys. Chem. B 2006, 110,
20085–20088.
(21) Irie, M. Pure Appl. Chem. 1996, 68, 1367–1371.
(22) Kobatake, S.; Takami, S.; Muto, H.; Ishikawa, T.; Irie, M. Nature
2007, 446, 778–781.
(23) Harada, J.; Uekusa, H.; Ohashi, Y. J. Am. Chem. Soc. 1999, 121,
5809–5810.
(24) Amimoto, K.; Kawato, T. J. Photochem. Photobiol., C 2005, 6,
207–226.
(25) Sliwa, M.; Le´tard, S.; Malfant, I.; Nierlich, M.; Lacroix, P. G.;
Asahi, T.; Masuhara, H.; Yu, P.; Nakatani, K. Chem. Mater. 2005, 17, 4727–
4735.
5. Conclusion
In the present study, we have succeeded in the demonstration
of a new archetype of solid state photochromic reaction of PCT
microcrystal, involving [2 + 2] cyclodimerization and trans-
to-cis isomerization, in contrast to those of well-known two-
state photochromic reactions. We propose that the photoexci-
tation induces an excited state proton shift of PCT*, which
undergoes two relaxation pathways. The formation of the [2 +
2] cyclodimer should be an important supporting factor to
facilitate dynamic free spaces in the crystal lattice for the
neighboring excited molecules to accomplish cooperatively a
volume-conserving trans-to-cis isomerization. A reverse reaction
is undergone from cis-to-trans by a visible light irradiation,
demonstrating a photocyclic behavior. We also demonstrated
that higher power intensity results in higher possibility of
(26) Koshima, H.; Ojima, N.; Uchimoto, H. J. Am. Chem. Soc. 2009,
131, 6890–6891.