Communications
catalyst can be easily recovered in 70–80% yield after the
Keywords: asymmetric synthesis · Michael addition ·
nitro compounds · organocatalysis · synthetic methods
.
reaction by simple aqueous acid/base work up, which is an
additional aspect of the approach that is of practical
importance.
The excellent chemical and stereochemical efficiency
observed in these Michael reactions is also of particular
interest in that it may provide a simple route to 3,4-
disubstituted pyrrolidines[8d] or, as shown in Scheme 2, to g-
butyrolactones, which are common structural units of natural
products.[14]
[1] For general reviews on asymmetric organocatalysis, see: a) P. I.
Dalko, L. Moisan, Angew. Chem. 2001, 113, 3840 – 3864; Angew.
Chem. Int. Ed. 2001, 40, 3726 – 3748; b) J. Seayad, B. List, Org.
Biomol. Chem. 2005, 3, 719 – 724; c) A. Berkessel, H. Gröger,
Asymmetric Organocatalysis: From Biomemetic Concepts to
Applications in Asymmetric Synthesis, Wiley-VCH, Weinheim,
2005.
[2] a) For recent reviews on conjugate addition to nitroalkenes, see:
O. M. Berner, L. Tedeschi, D. Enders, Eur. J. Org. Chem. 2002,
1877 – 1894; b) V. V. Perekalin, E. S. Lipina, V. M. Berestovit-
skaya, D. A. Efremov in Nitroalkenes, Conjugated Nitro Com-
pounds, Wiley, 1994; for a general review on enantioselective
conjugate addition, see: c) M. P. Sibi, S. Manyem, Tetrahedron
2000, 56, 8033 – 8061.
[3] a) G. Rosini in Comprehensive Organic Synthesis, Vol. 2 (Eds.:
B. M. Trost, I. Flemming, C. M. Heathcock), Pergamon, New
York, 1991, pp. 321 – 340; b) F. A. Luzio, Tetrahedron 2001, 57,
915 – 945; c) N. Ono, The Nitro Group in Organic Synthesis,
Wiley-VCH, New York, 2001.
[4] For a review on stereoselective reactions using thioureas: Y.
Takemoto, Org. Biomol. Chem. 2005, 3, 4299 – 4306; for recent
examples on thiourea-catalyzed conjugate additions, see: a) T.
Okino, Y. Hoashi, T. Furukawa, X. Xu, Y. Takemoto, J. Am.
Chem. Soc. 2005, 127, 119 – 125; b) S. H. McCooey, S. J. Connon,
Angew. Chem. 2005, 117, 107 – 110; Angew. Chem. Int. Ed. 2005,
44, 6367 – 6370; c) J. Wang, H. Li, W. Duan, L. Zu, W. Wang, Org.
Lett. 2005, 7, 4713 – 4716; S. J. Connon, Chem. Eur. J 2006, 12,
5418 – 5427.
[5] For reviews, see: a) S. France, D. J. Guerin, S. J. Miller, T. Lectka,
Chem. Rev. 2003, 103, 2985 – 3012; b) T. Ishikawa, T. Irobe,
Chem. Eur. J. 2002, 8, 552 – 557; for recent examples on Lewis
base promoted additions, see: c) H. Li, Y. Wang, L. Tang, L.
Deng, J. Am. Chem. Soc. 2004, 126, 9906 – 9907; d) H. Li, Y.
Wang, L. Tang, F. Wu, X. Liu, C. Guo, B. M. Foxman, L. Deng,
Angew. Chem. 2005, 117, 107 – 110; Angew. Chem. Int. Ed. 2005,
44, 105 – 108.
Scheme 2. Elaboration of the Michael adducts.
To better understand the efficiency of the present model
the reaction between propionaldehyde and 1-nitropropene
catalyzed by N,N-dimethyl-trans-4-hydroxyprolylamide was
studied by DFT calculations at the B3LYP/6-31G* level.
Concordant with our initial hypothesis, the results show that
the OH group helps to discriminate between the two possible
transition-state (TS) models C and D by 2.1 kcalmolÀ1
(Figure 2) and that in the absence of a hydrogen-bond
donor, the reactions promoted by the naked prolylamide
derivative or the OMe derivative are 103 times slower.[15]
[6] For reactions catalyzed by chiral Lewis acids, see: a) D. M.
Barners, J. Ji, M. G. Fickes, M. A. Fitzperald, S. A. King, H. E.
Morton, F. A. Plagge, M. Preskill, S. H. Wagaw, S. J. Witten-
berger, J. Zhang, J. Am. Chem. Soc. 2002, 124, 13097 – 13105;
b) M. Watanabe, A. Ikagawa, H. Wang, K. Murata, T. Ikariya, J.
Am. Chem. Soc. 2004, 126, 11148 – 11149; c) D. A. Evans, D.
Seidel, J. Am. Chem. Soc. 2005, 127, 9958 – 9959.
[7] For reviews, see: a) E. R. Jarvo, S. D. Miller, Tetrahedron 2002,
58, 2481 – 2495; b) B. List, Tetrahedron 2002, 58, 5573 – 5590;
c) B. List, Acc. Chem. Res. 2004, 37, 548 – 557; d) B. List, Chem.
Commun. 2006, 819 – 824.
Figure 2. Models for the TS in the catalytic addition of propionalde-
hyde to 1-nitropropene.
[8] For l-proline, see: a) B. List, P. Pojarliev, H. J. Martin, Org. Lett.
2001, 3, 2423 – 2425; b) D. Enders, A. Seki, Synlett 2002, 26 – 28;
c) P. Kotrusz, S. Toma, H.-G. Schmalz, A. Adler, Eur. J. Org.
Chem. 2004, 1577 – 1583; for diamine/protonic acid catalysts,
see: d) J. M. Betancort, C. F. Barbas III, Org. Lett. 2001, 3, 3737 –
3740; e) N. Mase, R. Thayumanavan, F. Tanaka, C. F. Barbas III,
Org. Lett. 2004, 6, 2527 – 2530; f) J. M. Betancort, K. Sakthivel,
R. Thayumanavan, F. Tanaka, C. F. Barbas III, Synthesis 2004,
1509 – 1521; g) O. Andrey, A. Alexakis, G. Bernardinelli, A.
Tomassini, Adv. Synth. Catal. 2004, 346, 1147 – 1168; h) S. Luo,
X. Mi, L. Zhang, S. Liu, H. Xu, J-P. Cheng, Angew. Chem. 2006 ,
118, 3165 – 3169; Angew. Chem. Int. Ed. 2006, 45, 3093 – 3097; for
pyrrolidine–pyridine/protonic acid systems, see: i) T. Ishii, S.
Fujioka, Y. Sekiguchi, H. Kotsuki, J. Am. Chem. Soc. 2004, 126,
9558 – 9559; for homoprolinetetrazole derivative, see: j) A. J. A.
Cobb, D. A. D. Longbottom, D. M. Shaw, S. V. Ley, Chem.
In conclusion, we have documented a new model for the
catalytic asymmetric Michael addition of aldehydes to nitro-
alkenes which holds several interesting features: a) Michael
adducts with very high diastereo- and enantioselectivity and a
broad range of b-substitution patterns are accessible; b) the
catalyst, which in most cases is used in only 5 mol%, is readily
available and recoverable; and c) almost equimolar amounts
of the aldehyde donor can be employed.
Received: June 2, 2006
Published online: August 4, 2006
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 5984 –5987