yet been established.1c,2,8 To confirm the configurations and
examine the structure activity relationships, total synthesis
of 1 is required. Herein we report the synthesis of PD 113,-
271 and establish that its stereochemistry is 4S,5S,8R,9R,-
11R in 1.
(JH-3/H-4 ) 2.7 Hz, JH-4/H-5 ) 8.7 Hz, 4,5-anti). Thus we
deduced that the absolute configuration at C4 might be S.
Our retrosynthetic analysis of 1a is outlined in Figure 3.
In this strategy, two unstable units, phosphate monoester and
In planning the synthesis, we drew from knowledge of
the structurally related natural products fostriecin (2),2,5,6,8
phomalactone (3),9 and 4-epi-phomalactone (4),10 whose
absolute and relative configurations have been determined
by NMR spectroscopy, degradation studies, and total syn-
thesis (Figure 2). Since 1 should be synthesized via biosyn-
Figure 3. Retrosynthetic analysis of (4S)-4-hydroxyfostriecin (1a).
triene, should be introduced at the late stages of the synthesis.
Further disconnection of the R,â-unsaturated lactone 5 at the
C6-C7 bond would lead to an aldehyde 7 and a ketophos-
phonate 8. The aldehyde 7 would be derived from alcohol
9, prepared from L-tartaric acid according to a published
method.11 The ketophosphonate 8 would be prepared from
the optically active lactone 10, which is derived from
D-galactose.12
Synthesis of the aldehyde 7 is outlined in Scheme 1. The
alcohol 9, which can be readily produced in three steps from
dimethyl L-tartrate,11 was oxidized by a Swern oxidation13
to give the corresponding aldehyde. Without any further
purification, the aldehyde was directly subjected to the
Z-selective Horner-Emmons reaction14 to produce the
unsaturated ester 11 in 93% yield from 9. Next was a DIBAL
reduction of ester 10 (98% yield) and oxidation of the
corresponding allylic alcohol with MnO2, followed by
treatment of the resulting aldehyde with CSA in EtOH to
provide 12 (69% yield in two steps). A Swern oxidation of
12 furnished aldehyde 7 with a 97% yield.
Figure 2. Speculations about the absolute configuration of PD
113,271 (1) based on the NMR data for phomalactone (3) and 4-epi-
phomalactone (4).
thetic pathways that are similar to 2, the absolute configu-
rations at C5, C8, C9, and C11 of 1 might be S, R, R, and R,
respectively, the same as the stereochemistry of 2. The syn
relationship between C4 and C5 of 1 was deduced based on
the reported coupling constants (JH-3/H-4 ) 6.3 Hz, JH-4/H-5
) 2.7 Hz) of 1,1c which are similar to those of 3 (JH-3/H-4
)
5.3 Hz, JH-4/H-5 ) 3.1 Hz, 4,5-syn) versus those of 4
(6) Synthetic studies: (a) Just, G.; O’Connor, B. Tetrahedron Lett. 1988,
29, 753. (b) Liu, S. U.; Huang, D. F.; Huang, H. H.; Huang, L. Chin. Chem.
Lett. 2000, 11, 957. (c) Cossy, J.; Pradaux, F.; BouzBouz, S. Org. Lett.
2001, 3, 2233. (d) Kiyotsuka, Y.; Igarashi, J.; Kobayashi, Y. Tetrahedron
Lett. 2002, 43, 2725. (e) Marshall, J. A.; Bourbeau, M. P. Org. Lett. 2003,
5, 3197. (f) Ramachandran, P. V.; Liu, H. P.; Reddy, M. V. R.; Brown, H.
C. Org. Lett. 2003, 5, 3755.
(7) Roberge, M.; Tudan, C.; Hung, S. M. F.; Harder, K. W.; Jirik, F. R.;
Anderson, H. Cancer Res. 1994, 54, 6115. Guo, X. W.; Th’ng, J. P. H.;
Swank, R. A.; Anderson, H. J.; Tudan, C.; Bradbury, E. M.; Roberge, M.
EMBO J. 1995, 14, 976. Ho, D. T.; Roberge, M. Carcinogenesis 1996, 17,
967. Walsh, A. H.; Cheng, A.; Honkanen, R. E. FEBS Lett. 1997, 416,
230. Hastie, C. J.; Cohen, P. T. W. FEBS Lett. 1998, 431, 357. Cheng, A.;
Balczon, R.; Zuo, Z.; Koons, J. S.; Walsh, A. H.; Honkanen, R. E. Cancer
Res. 1998, 58, 36110.
(8) Boger, D. L.; Hikota, M.; Lewis, B. M. J. Org. Chem. 1997, 62,
1748.
(9) Evans, R. H., Jr.; Ellestad, G. A.; Kunstmann, M. P. Tetrahedron
Lett. 1969, 22, 1791.
(11) Somfai, P.; Olsson, R. Tetrahedron 1993, 34, 6645.
(12) (a) Kiliani, H.; Kleeman, S. Ber. 1884, 17, 1296. (b) Bock, K.; Lundt,
I.; Pedersen, C. Acta Chem. Scand. B 1981, 163. (c) Nicolaou, K. C.;
Fylaktakidou, K. C.; Monenschein, H.; Li, Y.; Weyershausen, B.; Mitchell,
H. J.; Wei, H.; Guntupalli, P.; Hepworth, D.; Sugita, K. J. Am. Chem. Soc.
2003, 125, 15433.
(13) Mancuso, A. J.; Huang, S.-L.; Swern, D. J. Org. Chem. 1978, 43,
2480.
(14) (a) Ando, K. J. Org. Chem. 1998, 63, 8411. (b) Ando, K.
Tetrahedron Lett. 1995, 36, 4105. (c) Ando, K. J. Org. Chem. 1997, 62,
1934. (d) Ando, K.; Oishi, T.; Hirama, M.; Ohno, H.; Ibuka, T. J. Org.
Chem. 2000, 65, 4745. (e) Pinko, P. E.; Salo, T. M. Tetrahedron Lett. 2003,
44, 4361.
(10) Hiraoka, H.; Furuta, K.; Ikeda, N.; Yamamoto, H. Dep. Appl. Chem.
1984, 57, 2777.
5308
Org. Lett., Vol. 8, No. 23, 2006