10
QAMAR ET AL.
novel 6-aryl-1,4-dihydrobenzo[d][1,3]oxazine-2-thiones as progester-
one receptor modulators leading to the potent and selective nonsteroi-
dal progesterone receptor agonist tanaproget. Journal of Medicinal
Chemistry, 48(16), 5092–5095.
Sawant, R. L., Mhaske, M. S., & Wadekar, J. B. (2012). Anticoagulant
potential of schiff bases of 1,3-oxazines. International Journal of Phar-
macy and Pharmaceutical Sciences, 4(4), 320–323.
Sethi, K. K., Verma, S. M., Tanç, M., Purper, G., Calafato, G., Carta, F., &
Supuran, C. T. (2014). Carbonic anhydrase inhibitors: Synthesis and
inhibition of the human carbonic anhydrase isoforms I, II, IX and XII
with benzene sulfonamides incorporating 4- and 3-nitrophthalimide
moieties. Bioorganic & Medicinal Chemistry, 22(5), 1586–1595.
Simone, G. D., Fiore, A. D., & Supuran, C. T. (2008). Are carbonic anhy-
drase inhibitors suitable for obtaining antiobesity drugs? Current Phar-
maceutical Design, 14(7), 655–660.
Studio, D. (2008). Discovery, version 2.1. San Diego, CA: Accelrys.
Sukhorukov, A. Y., Nirvanappa, A. C., Swamy, J., Ioffe, S. L.,
Swamy, S. N., & Rangappa, K. S. (2014). Synthesis and characterization
of novel 1,2-oxazine based small molecules that targets acetylcholines-
terase. Bioorganic & Medicinal Chemistry Letters, 24(15), 3618–3621.
Supuran, C. T. (2008). Carbonic anhydrases: Novel therapeutic applications
for inhibitors and activators. Nature Reviews Drug Discovery, 7(2),
168–181.
Taslimi, P., Sujayev, A., Turkan, F., Garibov, E., Huyut, Z., Farzaliyev, V., &
Gulçin, İ. (2018). Synthesis and investigation of the conversion reactions
of pyrimidine-thiones with nucleophilic reagent and evaluation of their
acetylcholinesterase, carbonic anhydrase inhibition, and antioxidant
activities. Journal of Biochemical and Molecular Toxicology, 32(2), e22019.
Temperini, C., Innocenti, A., Scozzafava, A., Parkkila, S., & Supuran, C. T.
(2009). The coumarin-binding site in carbonic anhydrase accommo-
dates structurally diverse inhibitors: The antiepileptic lacosamide as an
example and lead molecule for novel classes of carbonic anhydrase
inhibitors. Journal of Medicinal Chemistry, 53(2), 850–854.
Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R.,
Halgren, T. A., … Mainz, D. T. (2006). Extra precision glide: Docking
and scoring incorporating a model of hydrophobic enclosure for pro-
tein−ligand complexes. Journal of Medicinal Chemistry, 49(21),
6177–6196.
Ghose, A. K., Herbertz, T., Hudkins, R. L., Dorsey, B. D., & Mallamo, J. P.
(2012). Knowledge-based, central nervous system (CNS) lead selection
and lead optimization for CNS drug discovery. ACS Chemical Neurosci-
ence, 3(1), 50–68.
Gulçin, İ., & Taslimi, P. (2018). Sulfonamide inhibitors: A patent review
2013–present. Expert Opinion on Therapeutic Patents, 28(7), 541–549.
Hilvo, M., Salzano, A. M., Innocenti, A., Kulomaa, M. S., Scozzafava, A.,
Scaloni, A., … Supuran, C. T. (2008). Cloning, expression, post-translational
modifications and inhibition studies on the latest mammalian carbonic
anhydrase isoform, CA XV. Journal of Medicinal Chemistry, 52(3),
646–654.
Kadam, R., & Roy, N. (2007). Recent trends in drug-likeness prediction: A
comprehensive review of in silico methods. Indian Journal of Pharma-
ceutical Sciences, 69(5), 609–615.
Krasavin, M., Shetnev, A., Sharonova, T., Baykov, S., Tuccinardi, T.,
Kalinin, S., … Supuran, C. T. (2018). Heterocyclic periphery in the
design of carbonic anhydrase inhibitors: 1,2,4-Oxadiazol-5-yl benzene-
sulfonamides as potent and selective inhibitors of cytosolic hCA II and
membrane-bound hCA IX isoforms. Bioorganic Chemistry, 76, 88–97.
Lanni, T. B., Greene, K. L., Kolz, C. N., Para, K. S., Visnick, M., Mobley, J. L.,
… Liimatta, M. B. (2007). Design and synthesis of phenethyl benzo[1,4]
oxazine-3-ones as potent inhibitors of PI3Kinaseγ. Bioorganic & Medici-
nal Chemistry Letters, 17(3), 756–760.
Thiry, A., Dogne, J. -M., Masereel, B., & Supuran, C. T. (2006). Targeting
tumor-associated carbonic anhydrase IX in cancer therapy. Trends in
Pharmacological Sciences, 27(11), 566–573.
Lovell, S. C., Davis, I. W., Arendall, W. B., De Bakker, P. I., Word, J. M.,
Prisant, M. G., … Richardson, D. C. (2003). Structure validation by Cα
geometry: φ, ψ and Cβ deviation. Proteins: Structure, Function, and Bio-
informatics, 50(3), 437–450.
Mayekar, A. N., Yathirajan, H. S., Narayana, B., Sarojini, B. K.,
Kumari, N. S., & Harrison, W. T. (2011). Synthesis and antimicrobial
study of new 8-bromo-1,3-diaryl-2,3-dihydro-1H-naphtho[1,2e][1,3]
oxazines. International Journal of Chemistry, 3(1), 74–86.
Mincione, F., Scozzafava, A., & Supuran, C. T. (2009). Antiglaucoma carbonic
anhydrase inhibitors as ophthalomologic drugs. Hoboken, NJ: Wiley.
Narita, T., Suga, A., Kobayashi, M., Hashimoto, K., Sakagami, H.,
Motohashi, N., … Wakabayashi, H. (2009). Tumor-specific cytotoxicity
and type of cell death induced by benzo[b]cyclohept[e][1,4]oxazine and
2-aminotropone derivatives. Anticancer Research, 29(4), 1123–1130.
Ouberai, M., Asche, C., Carrez, D., Croisy, A., Dumy, P., & Demeunynck, M.
(2006). 3,4-Dihydro-1H-[1,3]oxazino[4,5-c]acridines as a new family of
Tian, S., Wang, J., Li, Y., Li, D., Xu, L., & Hou, T. (2015). The application of
in silico drug-likeness predictions in pharmaceutical research. Advanced
Drug Delivery Reviews, 86, 2–10.
Tomasulo, M., Sortino, S., & Raymo, F. M. (2005). A fast and stable photo-
chromic switch based on the opening and closing of an oxazine ring.
Organic Letters, 7(6), 1109–1112.
Turgut, Z., Pelit, E.,
&
Köycü, A. (2007). Synthesis of new
1,3-disubstituted-2,3-dihydro-1H-naphth [1,2e][1,3]oxazines. Mole-
cules, 12(3), 345–352.
Willard, L., Ranjan, A., Zhang, H., Monzavi, H., Boyko, R. F., Sykes, B. D., &
Wishart, D. S. (2003). VADAR: A web server for quantitative evaluation
of protein structure quality. Nucleic Acids Research, 31(13), 3316–3319.
ꢀ
ꢀ
Yigit, B., Yigit, M., Barut Celepci, D., Gök, Y., Aktas¸, A., Aygün, M., & Gülçin, İ.
(2018). Novel benzylic substituted imidazolinium, tetrahydropyrimidinium
and tetrahydrodiazepinium salts: Potent carbonic anhydrase and acetyl-
cholinesterase inhibitors. ChemistrySelect, 3(27), 7976–7982.
cytotoxic drugs. Bioorganic
4641–4643.
Öztaskın, N., Taslimi, P., Maras¸, A., Gülcin, İ., & Göksu, S. (2017). Novel
antioxidant bromophenols with acetylcholinesterase, butyrylcholines-
terase and carbonic anhydrase inhibitory actions. Bioorganic Chemistry,
74, 104–114.
& Medicinal Chemistry Letters, 16(17),
SUPPORTING INFORMATION
Additional supporting information may be found online in the Sup-
porting Information section at the end of the article.
Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S.,
Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF chimera—A
visualization system for exploratory research and analysis. Journal of
Computational Chemistry, 25(13), 1605–1612.
Ren, S., Feng, Y., Wen, H., Li, C., Cui, J., & Jia, S. (2018). Immobilized car-
bonic anhydrase on mesoporous cruciate flower-like metal organic
framework for promoting CO2 sequestration. International Journal of
Biological Macromolecules, 117, 189–198.
How to cite this article: Qamar R, Saeed A, Saeed M, et al.
Synthesis, carbonic anhydrase inhibitory activity and antioxi-
dant activity of some 1,3-oxazine derivatives. Drug Dev Res.