Angewandte
Chemie
protection of pentol 28. Studies towards the synthesis of
other members of the zarazozic acid/squalestatin family are
underway.
Received: June 22, 2006
Published online: August 30, 2006
Keywords: Ireland–Claisen rearrangement · lactones ·
.
naturalproducts · totalsynthesis · zaragozic acid
[1] a) K. E. Wilson, R. M. Burk, T. Biftu, R. G. Ball, K. Hoogsteen,
J. Org. Chem. 1992, 57, 7151 – 7158; b) J. D. Bergstrom, M. M.
Kurtz, D. J. Rew, A. M. Amend, J. D. Karkas, R. G. Bosterdor,
V. S. Dansal, C. Dufresne, F. L. V. Middlesworth, O. D. Hensens,
J. M. Liesch, D. L. Zink, K. E. Wilson, J. Onishi, J. A. Millifan, G.
Bills, L. Kaplan, M. Nallin-Omstead, R. G. Jenkins, L. Huang,
M. S. Meinz, L. Quinn, R. W. Burg, Y. L. Kong, S. Mochales, M.
Mojena, I. Martin, F. Pelaez, M. T. Diez, A. W. Alberts, Proc.
Natl. Acad. Sci. USA 1993, 90, 80 – 84.
[2] M. J. Dawson, J. E. Farthing, P. S. Marshall, R. F. Middleton,
M. J. OꢀNeill, A. Shuttleworth, C. Stylli, R. M. Tait, P. M. Taylor,
H. G. Wildman, A. D. Buss, D. Langley, M. V. Hayes, J. Antibiot.
1992, 45, 639 – 647.
Scheme 6. Completion of the formal total synthesis of zaragozic
acid C (1). CSA=10-camphorsulfonic acid, DMP=Dess–Martin peri-
odinane, DMF=N,N-dimethylformamide, MIP=methoxyisopropyl.
[3] Reviews: U. Koert, Angew. Chem. 1995, 107, 849 – 855; Angew.
Chem. Int. Ed. Engl. 1995, 34, 773 – 778; A. Nadin, K. C.
Nicolaou, Angew. Chem. 1996, 108, 1372 – 1766; Angew. Chem.
Int. Ed. Engl. 1996, 35, 1622 – 1656; N. Jotterand, P. Vogel, Curr.
Org. Chem. 2001, 5, 637 – 661; A. Armstrong, T. J. Blench,
Tetrahedron 2002, 58, 9321 – 9349.
[4] A. Baxter, B. J. Fitzgerald, J. L. Hutson, A. D. McCarthy, J. M.
Motteram, B. C. Ross, M. Sapra, M. A. Snowden, N. S. Watson,
R. J. Williams, C. Wright, J. Biol. Chem. 1992, 267, 11705 –
11708.
[5] Review: N. S. Watson, P. A. Procopiou, Prog. Med. Chem. 1996,
33, 331 – 378.
[6] J. B. Gibbs, D. L. Pompliano, S. D. Mosser, E. Rands, R. B.
Lingham, S. B. Singh, E. M. Scolnick, N. E. Kohl, A. Oliff, J.
Biol. Chem. 1993, 268, 7617 – 7620.
[7] Review: S. Nakamura, Chem. Pharm. Bull. 2005, 53, 1 – 10.
[8] a) E. M. Carreira, J. Du Bois, J. Am. Chem. Soc. 1994, 116,
10825 – 10826; E. M. Carreira, J. Du Bois, J. Am. Chem. Soc.
1995, 117, 8106 – 8125; b) D. A. Evans, J. C. Barrow, J. L.
Leighton, A. J. Robichaud, M. Sefkow, J. Am. Chem. Soc.
1994, 116, 12111 – 12112; c) H. Sato, S. Nakamura, N. Watanabe,
S. Hashimoto, Synlett 1997, 451 – 454; S. Nakamura, H. Sato, Y.
Hirata, N. Watanabe, S. Hashimoto, Tetrahedron 2005, 61,
11078 – 11106; d) A. Armstrong, L. H. Jones, P. A. Barsanti,
Tetrahedron Lett. 1998, 39, 3337 – 3340; A. Armstrong, P. A.
Barsanti, L. H. Jones, G. Ahmed, J. Org. Chem. 2000, 65, 7020 –
7032; e) S. Nakamura, Y. Hirata, T. Kurosaki, M. Anada, O.
Kataoka, S. Kitagaki, S. Hashimoto, Angew. Chem. 2003, 115,
5509 – 5513; Angew. Chem. Int. Ed. 2003, 42, 5351 – 5355.
[9] a) K. C. Nicolaou, A. Nadin, J. E. Leresche, E. W. Yue, S.
La Greca, Angew. Chem. 1994, 106, 2312 – 2313; Angew. Chem.
Int. Ed. Engl. 1994, 33, 2190 – 2191; K. C. Nicolaou, E. W. Yue, S.
La Greca, A. Nadin, Z. Yang, J. E. Lereshe, T. Tsuri, Y. Naniwa,
F. De Riccardis, Chem. Eur. J. 1995, 1, 467 – 494; b) D. Stoermer,
S. Caron, C. H. Heathcock, J. Org. Chem. 1996, 61, 9115 – 9125;
S. Caron, D. Stoermer, A. K. Mapp, C. H. Heathcock, J. Org.
Chem. 1996, 61, 9126 – 9134; c) K. Tomooka, M. Kikuchi, K.
Igawa, M. Suzuki, P.-H. Keong, T. Nakai, Angew. Chem. 2000,
112, 4676 – 4679; Angew. Chem. Int. Ed. 2000, 39, 4502 – 4505.
[10] S. F. Martin, S. Naito, J. Org. Chem. 1998, 63, 7592 – 7593; S.
Naito, M. Escobar, P. R. Kym, S. Liras, S. F. Martin, J. Org.
Chem. 2002, 67, 4200 – 4208.
24). Hydrolysis of the methyl esters and formation[33] of the di-
tert-butyl ester gave bicycle 27.
The final major synthetic challenge was the selective
functionalization of the C4 primary alcohol. This quest began
with global debenzylation through hydrogenolysis to give
pentol 28 in high yield.[34] Numerous experiments to selec-
tively protect the C4 primary alcohol failed. In one case, to
form the dimethylacetonide of the 1,2-diol at C4, pentol 28
was exposed to 2,2-dimethoxypropane in DMF in the
presence of catalytic CSA, which resulted in the formation
of an undesired acetonide between the primary alcohol and
the C7 hydroxy group. However, during the course of
monitoring this reaction by TLC, we initially noticed the
selective formation of a spot at a higher Rf value which slowly
disappeared and a spot at a lower Rf value, which corresponds
to the undesired acetonide, was formed. Treatment of 28 with
the same reagents as above, but at 08C for a shorter time,
selectively afforded the compound with a higher Rf value,
which was identified as methoxyisopropyl (MIP) ether 29,
along with recovered starting material 28, which could readily
be recycled. This serendipitous discovery led to the mono-
protection of pentol 28 with a highly acid-labile protecting
group. Acetylation of 29 and treatment with mild acid[35] gave
alcohol 30, which upon two-stage oxidation and ester
formation yielded the target compound 2, the physical data
for which were identical to those reported.[8a,c]
In conclusion, we have completed a synthesis the pre-
cursor of zaragozic acid C (1), in which the C4–C5 bond was
formed in a stereoselective manner with concomitant for-
mation of the quaternary asymmetric centers by an Ireland–
Claisen rearrangement of the sensitive allylic ester 7. Other
highlights of this route include a novel acetolysis of the methyl
ketal 15, selective carbanion addition to the spirobislactone 4,
methanolysis of lactone 24, subsequent formation of the
zaragozic acid bicycle 26, and a selective MIP group
Angew. Chem. Int. Ed. 2006, 45, 6376 –6380
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim