Angewandte
Chemie
[2] For information on original isolation, see: a) V. I. Muravꢀeva,
A. I. Banꢀkovskii, Dokl. Acad. Nauk SSSR 1956, 110, 998 – 1000;
b) V. I. Muravꢀeva, A. I. Banꢀkovskii, Med. Prom-st. SSSR 1956,
10, 27 – 28; for structure determination of securinine and
isolation of allosecurinine, see: c) I. Satoda, M. Murayama, J.
Tsuji, E. Yoshii, Tetrahedron Lett. 1962, 1199 – 1206.
[3] a) For isolation of virosecurinine, see: T. Nakano, T. H. Yang, S.
Terao, Tetrahedron 1963, 609 – 619; b) for isolation of viroallo-
securinine, see: S. Saito, T. Iwamoto, T. Tanaka, C. Matsumura,
N. Sugimoto, Z. Horii, Y. Tamura, Chem. Ind. 1964, 28, 1263 –
1264.
[4] I. A. Beutler, E. W. Karbon, A. N. Brubaker, R. Malik, D. R.
Curtis, S. J. Enna, Brain Res. 1985, 330, 135 – 140.
[5] a) T. Honda, H. Namiki, M. Watanabe, H. Mizutani, Tetrahedron
Lett. 2004, 45, 5211 – 5213; b) R. Alibes, M. Ballbe, F. Busque, P.
de March, L. Elias, M. Figueredo, J. Font, Org. Lett. 2004, 6,
1813 – 1816; c) T. Honda, H. Namiki, K. Kaneda, H. Mizutani,
Org. Lett. 2004, 6, 87 – 89; d) T. Honda, H. Namiki, M. Kudoh, H.
Nagase, H. Mizutani, Heterocycles 2003, 59, 169 – 187; e) T.
Honda, H. Namiki, M. Kudoh, N. Watanabe, H. Nagase, H.
Mizutani, Tetrahedron Lett. 2000, 41, 5927 – 5930; f) Z. Horii, M.
Hanaoka, Y. Yamawaki, Y. Tamura, S. Saito, N. Shigematsu, K.
Kotera, H. Yoshikawa, Y. Sato, H. Nakai, N. Sugimoto,
Tetrahedron 1967, 23, 1165 – 1174; g) S. Saito, H. Yoshikawa, Y.
Sato, H. Nakai, N. Sugimoto, Z. Horii, N. Hanaoka, Y. Tamura,
Chem. Pharm. Bull. 1966, 14, 313 – 314.
Scheme 4. Synthesis of (+)-phyllantidine. a) LAH, THF, 08C; b) IBX,
=
[6] a) Z. Horii, T. Imanishi, M. Yamauchi, M. Hanaoka, J. Parello, S.
Munavalli, Tetrahedron Lett. 1972, 1877 – 1880; b) J. Parello, S.
Munavalli, C. R. Hebd. Seances Acad. Sci. 1965, 260, 337 – 340.
[7] N. H. Lajis, O. B. Guan, M. V. Sargent, B. W. Skelton, A. H.
White, Aust. J. Chem. 1992, 45, 1893 – 1897.
[8] T. Nakano, S. Terao, K. H. Lee, Y. Saeki, L. J. Durham, J. Org.
Chem. 1966, 31, 2274 – 2799.
[9] I. Uchida, S. Takase, H. Kayakiri, S. Kiyoto, M. Hashimoto, T.
Tada, S. Koda, Y. Morimoto, J. Am. Chem. Soc. 1987, 109, 4108 –
4109.
DMSO; c) CH2 CHMgBr, THF; d) IBX, DMSO (20% overall yield of
one diastereomer from a mixture of 17 and 18); e) second-generation
Grubbs catalyst (20 mol%), CH2Cl2, heated at reflux (74%); f) dieth-
ylphosphonoacetic acid, DCC, CH2Cl2 (71%); g) K2CO3, [18]crown-6,
toluene (quant.); h) DDQ/CH2Cl2, H2O (98%); i) Ph3P, DIAD, toluene
(98%). Mes=mesityl=2,4,6-trimethylphenyl, DCC=1,3-dicyclohexyl-
carbodiimide, DDQ=2,3-dichloro-4,6-dicyano-1,4-benzoquinone, DIA-
D=diisopropylazodicarboxylate.
[10] a) M. D. Ganton, M. A. Kerr, J. Org. Chem. 2004, 69, 8554 –
8557; b) I. S. Young, M. A. Kerr, Org. Lett. 2004, 6, 139 – 141;
I. S. Young, M. A. Kerr, Angew. Chem. 2003, 115, 3131 – 3134;
Angew. Chem. Int. Ed. 2003, 42, 3023 – 3026.
[11] These compounds are all readily prepared in short sequences
from commercial materials. Their preparation is included in the
Supporting Information.
[12] a) F. A. Davis, J. Lamendola, U. Nadir, E. W. Lluger, T. C.
Sedergran, T. W. Panunto, R. Billmers, R. Jenkins, Jr., I. J.
Turchi, W. H. Watson, J. S. Chen, M. Kimura, J. Am. Chem. Soc.
1980, 102, 2000 – 2005; b) F. A. Davis, L. C. Vishwakarma, J. M.
Billmers, J. Finn, J. Org. Chem. 1984, 49, 3243 – 3244.
[13] M. Nahmany, A. Melman, Org. Lett. 2001, 3, 3733 – 3735.
[14] This method was used in a similar butenolide formation for the
synthesis of related alkaloids norsecurinine and phyllanthine.
See: a) G. Han, M. G. LaPorte, J. J. Folmer, K. M. Werner, S. M.
Weinreb, Angew. Chem. 2000, 112, 243 – 246; Angew. Chem. Int.
Ed. 2000, 39, 237 – 240; b) G. Han, M. G. LaPorte, J. J. Folmer,
K. M. Werner, S. M. Weinreb, J. Org. Chem. 2000, 65, 6293 –
6306.
secured through oxidative removal of both the p-methoxy-
benzyl groups and ring closure under Mitsunobu conditions.
À
This method of piperidine formation is unusual for C N bond
formation, and we were pleasantly surprised at its efficiency.
However, there is ample precedent for such transforma-
tions.[15] The spectral data for synthetic (+)-phyllantidine
correspond to those reported in the literature, including the
sign of optical rotation. Analysis by HPLC on a chiral
stationary phase indicated no trace of the (À) isomer.
In summary, we have succeeded in preparing for the first
time the structurally unusual and demanding alkaloid
phyllantidine using a homo [3+2] dipolar cycloaddition. The
overall yield of the natural product is around 6% over 12
synthetic operations from the cycloaddition. Efforts to adapt
À
this protocol (through N O bond reduction and ring closure
to form a pyrrolidine) to other securinega alkaloids are in
progress.
[15] For examples of piperidine formation through Mitsunobu
cyclization, see: a) T. Tsunoda, F. Ozaki, N. Shirakata, Y.
Tamaoka, H. Yamamoto, S. Ito, Tetrahedron Lett. 1996, 37,
2463 – 2466; b) G. E. Keck, A. Palani, Tetrahedron Lett. 1993, 34,
3223 – 3224.
Received: June 27, 2006
Published online: September 13, 2006
Keywords: alkaloids · cycloaddition · nitrone · oxazine ·
.
total synthesis
[1] V. Snieckus, The Alkaloids, Vol. 14, Academic Press, New York,
1973, p. 425 – 506.
Angew. Chem. Int. Ed. 2006, 45, 6560 –6563
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
6563