670
S.H. Kim et al. / Polyhedron 31 (2012) 665–670
Fig. 4. (a) Catalytic activities and (b) Mw of sPS vs. polymerization temperature. j, 1/MAO; d, 2/MAO; N, 3/MAO; ꢀ, 4/MAO.
[3] A.-S. Rodrigues, E. Kirillov, J.-F. Carpentier, Coord. Chem. Rev. 252 (2008) 2115.
[4] J. Schellenberg, Prog. Polym. Sci. 34 (2009) 688.
[5] N. Ishihara, M. Kuramoto, M. Uoi, Macromolecules 21 (1988) 3356.
[6] T.E. Ready, R.O. Day, J.C.W. Chien, M.D. Rausch, Macromolecules 26 (1993)
5822.
[7] P. Foster, J.C.W. Chien, M.D. Rausch, Organometallics 15 (1996) 2404.
[8] Y. Kim, B.H. Koo, Y. Do, J. Organomet. Chem. 527 (1997) 155.
[9] W. Kaminsky, S. Lenk, V. Scholz, H.W. Roesky, A. Herzog, Macromolecules 30
(1997) 7647.
[10] Y. Kim, E. Hong, M.H. Lee, J. Kim, Y. Han, Y. Do, Organometallics 18 (1999) 36.
[11] Y. Kim, Y. Han, J.W. Hwang, M.W. Kim, Y. Do, Organometallics 21 (2002) 1127.
[12] Y. Hong, S.-d. Mun, J. Lee, Y. Do, Y. Kim, J. Organomet. Chem. 693 (2008) 1945.
[13] J. Lee, Y. Hong, J.H. Kim, S.H. Kim, Y. Do, Y.K. Shin, Y. Kim, J. Organomet. Chem.
693 (2008) 3715.
and 90 °C, mononuclear 3/MAO generated the highest molecular
weight polymers. This can be explained in terms of the ligands’ ste-
ric effects: b-H elimination became preferable to propagation with
increasing steric hindrance between the polymer chains and the li-
gands in the half-sandwich metallocenes [4]. Similar to the cata-
lysts’ activities, higher polymer molecular weights resulted from
2/MAO rather than 1/MAO at 50 °C.
To determine the polymers’ SI, they were extracted with reflux-
ing 2-butanone for 12 h. All systems afforded sPS with high SI val-
ues of 93–100% and Tm values of 268–272 °C under all tested
conditions. None of the four MAO systems showed significant low-
ing of Tm with increasing polymerization temperature, as is often
observed with homogeneous metallocene catalysts [3,4]. SI values
were not correlated with polymerization temperature.
In Summary, trinuclear half-sandwich titanocene complexes
bridged by fully deprotonated tris(4-hydroxy-3,5-diisopropylben-
zyl)amine were prepared. In the presence of MAO cocatalyst, they
showed enhanced activity towards the syndiospecific polymeriza-
tion of styrene compared with monomeric half-sandwich com-
plexes. Polymerization at 50 °C resulted in high molecular weight
polymers; the polymers’ molecular weights decreased significantly
at higher polymerization temperatures. These results appear to be
due to the combination of the electronic effects of the three
cationic metal centers through the deprotonated tris(4-hydroxy-
3,5-diisopropylbenzyl)amine bridges and/or the steric effects
between them.
[14] J.H. Kim, S. Yoon, S.-d. Mun, S.H. Kim, J. Lee, Y. Chung, S.H. Kwon, K.S. Lee, C.
Lee, Y. Kim, J. Organomet. Chem. 696 (2011) 1729.
[15] M. Delferro, T.J. Marks, Chem. Rev. 111 (2011) 2450.
[16] D.-h. Lee, K.-b. Yoon, S.-k. Noh, S.-s. Woo, Polymer 38 (1997) 1481.
[17] S.K. Noh, J. Lee, D.h. Lee, J. Organomet. Chem. 667 (2003) 53.
[18] S.K. Noh, Y. Yang, W.S. Lyoo, J. Appl. Polym. Sci. 90 (2003) 2469.
[19] J.C. Sierra, D. Hüerländer, M. Hill, G. Kehr, G. Erker, R. Fröhlich, Chem. Eur. J. 9
(2003) 3618.
[20] S.K. Noh, M. Lee, D.H. Kum, K. Kim, W.S. Lyoo, D.-H. Lee, J. Polym. Sci. A.: Polym.
Chem. 42 (2004) 1712.
[21] M.H. Lee, S.K. Kim, Y. Do, Organometallics 24 (2005) 3618.
[22] J. Sun, H. Zhang, X. Liu, X. Xiao, F. Lin, Eur. Polym. J. 42 (2006) 1259.
[23] S.K. Noh, W. Jung, H. Oh, Y.R. Lee, W.S. Lyoo, J. Organomet. Chem. 691 (2006)
5000.
[24] S.K. Kim, H.K. Kim, M.H. Lee, S.W. Yoon, S. Park, J.S. Lee, Y. Do, Eur. J. Inorg.
Chem. 4 (2007) 537.
[25] F. Lin, B. Zhu, X. Zhao, X. Li, J. Sun, J. Appl. Polym. Sci. 108 (2008) 504.
[26] Y. Nie, J. Sun, J. Cheng, H. Ren, H. Scchumann, J. Appl. Polym. Sci. 108 (2008)
3702.
[27] N.T.B. Linh, N.T.D. Huyen, S.K. Noh, W.S. Lyoo, D.-H. Lee, Y. Kim, J. Organomet.
Chem. 694 (2009) 3438.
ˇ
[28] M. Horácek, R. Gyepes, J. Merna, J. Kubišta, K. Mach, J. Pinkas, J. Organomet.
Acknowledgments
Chem. 695 (2010) 1425.
[29] S. Arévalo, M.R. Bonillo, E. de Jesús, F.J. de la Mata, J.C. Flores, R. Gómez, P.
Gómez-Sal, P. Ortega, J. Organomet. Chem. 681 (2003) 228.
[30] Y.-Y. Lyu, Y. Byun, J.-H. Yim, S. Chang, S.-Y. Lee, L.S. Pu, I.-M. Lee, Eur. Polym. J.
40 (2004) 1051.
[31] S.W. Yoon, Y. Kim, S.K. Kim, S.Y. Kim, Y. Do, S. Park, Macromol. Chem. Phys. 212
(2011) 785.
[32] M.-H. Lee, Y.-M. Jeong, J.-Y. Ryu, US 6,894,239 B2, 2005.
[33] L. Postigo, A.B. Vázquez, J. Sánchez-Nieves, P. Royo, E. Herdtweck,
Organometallics 27 (2008) 5588.
Y.K. is thankful for the financial support from the National
Research Foundation of Korea (NRF) grant funded by the Korean
government (MEST) (NRF 2010-0007092). S.H.K. acknowledges
the Korea Research Foundation Grant funded by the Korean
government (KRF-2007-511-C00028).
[34] S.K. Noh, S. Kim, Y. Yang, W.S. Lyoo, D.-h. Lee, Eur. Polym. J. 40 (2004) 227.
[35] K. Doeppert, U. Thewalt, J. Organomet. Chem. 301 (1986) 41.
[36] J. Schellenberg, Eur. Polym. J. 40 (2004) 2259.
[37] K. Nomura, J. Liu, Dalton Trans. 40 (2011) 7666.
[38] D.F. Shriver, The Manipulation of Air-Sensitive Compounds, McGraw-Hill, New
York, 1969.
[39] W.L.F. Armarego, C.L.L. Chai, Purification of Laboratory Chemicals, sixth ed.,
Elsevier, New York, 2009.
[40] K. Nomura, N. Naga, M. Miki, K. Yanagi, A. Imai, Organometallics 17 (1998)
2152.
Appendix A. Supplementary data
CCDC 844841 contains the supplementary crystallographic data
for LH3. These data can be obtained free of charge via http://
Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ,
UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.
[41] Bruker. APEX2, SAINT & SADABS, Bruker AXS Inc., Madison, Wisconsin, USA, 2007.
[42] G.M. Sheldrick, Acta Crystallogr. Sect. A 64 (2008) 112.
References
[43] K. Brandenburg, DIAMOND, Crystal Impact GbR, Bonn, Germany, 1999.
[44] A. Chandrasekaran, R.O. Day, R.R. Holmes, J. Am. Chem. Soc. 122 (2000) 1066.
[1] N. Ishihara, T. Seimiya, M. Kuramoto, M. Uoi, Macromolecules 19 (1986) 2464.
[2] J. Schellenberg, H.-J. Leder, Adv. Polym. Technol. 25 (2006) 141.