2026
L. Feliu et al. / Peptides 31 (2010) 2017–2026
[7] Cowell SM, Lee YS, Cain JP, Hruby VJ. Exploring Ramachandran and Chi space:
conformationally constrained amino acids and peptides in the design of bioac-
tive polypeptide ligands. Curr Med Chem 2004;11:2785–98.
[8] Cruz LJ, Luque-Ortega JR, Ribas L, Albericio F, Kahalalide F. An antitumor dep-
sipeptide in clinical trials, and its analogues as effective antileishmanial agents.
Mol Pharmaceut 2009;6:813–24.
[9] Dathe M, Nikolenko H, Klose G, Bienert M. Cyclization increases the
antimicrobial activity and selectivity of arginine- and tryptophan-containing
hexapeptides. Biochemistry 2004;43:9140–50.
[28] Monroc S, Badosa E, Besalú E, Planas M, Bardají E, Montesinos E, et al.
Improvement of cyclic decapeptides against plant pathogenic bacteria using
a combinatorial chemistry approach. Peptides 2006;27:2575–84.
[29] Morita H, Takeya K. Bioactive cyclic peptides from higher plants. Heterocycles
2010;80:739–64.
[30] Ohsaki Y, Gazdar AF, Chen H-C, Johnson BE. Antitumor activity of magainin
analogues against human lung cancer cell lines. Cancer Res 1992;52:3534–8.
[31] Papo N, Shai Y. Host defense peptides as new weapons in cancer treatment.
Cell Mol Life Sci 2005;62:784–90.
[10] Duléry V, Uhlich NA, Maillard N, Fluxá VS, Garcia J, Dumy P, et al. A cyclode-
capeptide ligand to vitamin B12. Org Biomol Chem 2008;6:4134–41.
[11] Faircloth G, Cuevas C, Kahalalide F. ES285: potent anticancer agents from
marine moluscs. Prog Mol Subcell Biol 2006;43:363–79.
[12] Frecer V, Ho B, Ding JL. De novo design of potent antimicrobial peptides. Antimi-
crob Agents Chemother 2004;48:3349–57.
[13] Garcia-Martin F, Cruz LJ, Rodriguez-Mias RA, Giralt E, Albericio F. Design and
synthesis of FAJANU: a de novo C2 symmetric cyclopeptide family. J Med Chem
2008;51:3194–202.
[14] Hancock REW, Sahl HG. Antimicrobial and host defense peptides as new anti-
infective therapeutic strategies. Nature Biotechnol 2006;24:1551–7.
[15] Hoskin DW, Ramamoorthy A. Studies on anticancer activities of antimicrobial
peptides. Biochim Biophys Acta 2008;1778:357–75.
[32] Park SA, Park HJ, Lee BI, Ahn YH, Kim SU, Choi KS. Bcl-2 blocks cisplatin-induced
apoptosis by suppression of ERK-mediated p53 accumulation in B104 cells. Mol
Brain Res 2001;93:18–26.
[33] Peschel A, Sahl HG. The co-evolution of host cationic antimicrobial peptides
and microbial resistance. Nat Rev Microbiol 2006;4:529–36.
[34] Qin CH, Bu X, Zhong X, Ng NLJ, Guo Z. Optimization of antibacterial cyclic
decapeptides. J Comb Chem 2004;6:398–406.
[35] Ropero S, Menéndez JA, Vázquez-Martín A, Montero S, Cortés-Funes H, Colomer
R. Trastuzumab plus tamoxifen: anti-proliferative and molecular interactions
in breast carcinoma. Breast Cancer Res Treat 2004;86:125–37.
[36] Schröder-Borm H, Bakalova R, Andrä J. The NK-lysin derived peptide NK-2 pref-
erentially kills cancer cells with increased surface levels of negatively charged
phosphatidylserine. FEBS Lett 2005;579:6128–34.
[16] Hui L, Leung K, Chen HM. The combined effects of antibacterial peptide cecropin
A and anticancer agents on leukemia cells. Anticancer Res 2002;22:2811–6.
[17] Jenssen H, Hamill P, Hancock REW. Peptide antimicrobial agents. Clin Microbiol
Rev 2006;19:491–511.
[18] Jiang S, Liao C, Bindu L, Yin B, Worthy KW, Fisher RJ, et al. Discovery of thioether-
bridged cyclic pentapeptides binding to Grb2-SH2 domain with high affinity.
Bioorg Med Chem Lett 2009;19:2693–8.
[37] Shai Y. Mode of action of membrane active antimicrobial peptides. Biopolymers
2002;66:236–48.
[38] Takahashi T, Nagamiya H, Doi T, Griffiths PG, Bray AM. Solid phase library syn-
thesis of cyclic depsipeptides: aurilide and aurilide analogues. J Comb Chem
2003;5:414–28.
[39] Ueda S, Oishi S, Wang Z, Araki T, Tamamura H, Cluzeau J, et al. Structure-activity
relationships of cyclic peptide-based chemokine receptor CXCR4 antagonists:
disclosing the importance of side-chain and backbone functionalties. J Med
Chem 2007;50:192–8.
[19] Johnson CL, Lu D, Huang J, Basu A. Regulation of p53 stabilization by DNA
damage and protein kinase. Mol Cancer Ther 2002;1:861–7.
[20] Kates SA, Solé NA, Johnson CR, Hudson D, Barany G, Albericio F. A novel, conve-
nient, three-dimensional orthogonal strategy for solid-phase synthesis of cyclic
peptides. Tetrahedron Lett 1993;34:1549–52.
[21] Katsara M, Tselios T, Deraos S, Deraos G, Minos-Timotheos M, Lazoura E,
et al. Round and round we go: cyclic peptides in disease. Curr Med Chem
2006;13:2221–32.
[22] Kim S, Kim SS, Bang Y-J, Kim S-J, Lee BJ. In vitro activities of native and design
peptide antibiotics against drug sensitive and resistant tumor cell lines. Pep-
tides 2003;24:945–53.
[23] Leuschner C, Hansel W. Membrane disrupting lytic peptides for cancer treat-
ments. Curr Pham Design 2004;10:2299–310.
[40] Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M. Synthetic therapeutic pep-
tides: science and market. Drug Discov Today 2010;15:40–56.
[41] Woessmann W, Chen X, Borkhardt A. Ras-mediated activation of ERK by
cisplatin induces cell death independently of p53 in osteosarcoma and neu-
roblastoma cell lines. Cancer Chemother Pharmacol 2002;50:397–404.
[42] Won H-S, Seo M-D, Jung S-J, Lee S-J, Kang S-J, Son W-S, et al. Structural determi-
nants for the membrane interaction of novel bioactive undecapeptides derived
from gaegurin 5. J Med Chem 2006;49:4886–95.
[43] Yao N, Xiao W, Wang X, Marik J, Park SH, Takada Y, et al. Discovery of targeting
ligands for breast cancer cells using the one-bead one-compound combinatorial
method. J Med Chem 2009;52:126–33.
[24] Liu T, Joo SH, Voorhees JL, Brooks CL, Pei D. Synthesis and screening of a cyclic
peptide library: discovery of small-molecule ligands against human prolactin
receptor. Bioorg Med Chem 2009;17:1026–33.
[25] Mader JS, Hoskin DW. Cationic antimicrobial peptides as novel cytotoxic agents
for cancer treatment. Expert Opin Investig Drugs 2006;15:933–46.
[26] Menendez JA, Lupu R, Colomer R. Inhibition of tumor-associated fatty acid
synthase hyperactivity induces synergistic chemosensitization of HER-2/neu-
overexpressing human breast cancer cells to docetaxel (taxotere). Breast
Cancer Res Treat 2004;84:183–95.
[44] Yao X, Panichpisal K, Kurtzman N, Nugent K. Cisplatin nephrotoxicity: a review.
Am J Med Sci 2007;334:115–24.
[45] Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resis-
tance. Pharmacol Rev 2003;55:27–55.
[46] Zhang L, Falla TJ. Antimicrobial peptides: therapeutic potential. Expert Opin
Pharmacother 2006;7:653–63.
[47] Zhang Y, Zhou S, Wavreille A-S, DeWille J, Pei D. Cyclic peptidyl inhibitors of
Grb2 and tensin SH2 domains identified from combinatorial libraries. J Comb
Chem 2008;10:247–55.
[27] Mocellin S, Pilati P, Nitti D. Peptide-based anticancer vaccines: recent advances
and future perspectives. Curr Med Chem 2009;16:4779–96.