Letters
Journal of Medicinal Chemistry, 2006, Vol. 49, No. 26 7591
may interfere with uptake, but the tPSA of 11b is just 62.9 Å2.
This compares favorably to lumiracoxib ({2-[(2-chloro-6-
fluorophenyl)amino]-5-methylphenyl}acetic acid, tPSA ) 58
Å2). The more polar 11c has similar properties (tPSA ) 96.1,
clogP ) 5.83) as the carboxylic acid 5 (clogP ) 5.92, tPSA )
93.4 Å2).19 The lipophilic substituents cause amphiphilic proper-
ties of the carboxylic acids, which may interact with membranes.
However, the placement of a polar end group, as in 12,
weakened but did not reverse the modulatory effect. Again, we
favor the N-alkylated derivatives for the investigation of
potential membrane interactions, as they allow the incorporation
of phospholipids analogues and membrane disrupting fragments.
If affected at all, the ꢀ-cleavage of γ-secretase was inhibited
at much higher compound concentrations than those determined
to be modulatory at the γ-site (Figure 4). The compounds are
therefore expected to have little or no impact on γ-secretase-
mediated signaling via the AICD or via intracellular domains
of other γ-secretase substrates. However, the interaction site of
these compounds has not been identified yet. The improvement
of potency and the investigation of in vivo activity are subject
to further investigations.
(10) Reines, S. A.; Block, G. A.; Morris, J. C.; Liu, G.; Nessly, M. L.;
Lines, C. R.; Norman, B. A.; Baranak, C. C. Rofecoxib: No Effect
on Alzheimer’s Disease in a 1-Year, Randomized, Blinded, Controlled
Study. Neurology 2004, 62, 66-71.
(11) Cummings, J. L. Continuing Medical Education: Alzheimer’s
Disease. N. Engl. J. Med. 2004, 351, 110.
(12) Lleo, A.; Berezovska, O.; Herl, L.; Raju, S.; Deng, A.; Bacskai, B.
J.; Frosch, M. P.; Irizarry, M.; Hyman, B. T. Nonsteroidal Anti-
Inflammatory Drugs Lower Aâ42 and Change Presenilin 1 Conforma-
tion. Nat. Med. 2004, 10, 1065-1066.
(13) Kukar, T.; Murphy, M. P.; Eriksen, J. L.; Sagi, S. A.; Weggen, S.;
Smith, T. E.; Ladd, T.; Khan, M. A.; Kache, R.; Beard, J.; Dodson,
M.; Merit, S.; Ozols, V. V.; Anastasiadis, P. Z.; Das, P.; Fauq, A.;
Koo, E. H.; Golde, T. E. Diverse Compounds Mimic Alzheimer
Disease-Causing Mutations by Augmenting Aâ42 Production. Nat.
Med. 2005, 11, 545-550.
(14) Peretto, I.; Radaelli, S.; Parini, C.; Zandi, M.; Raveglia, L. F.; Dondio,
G.; Fontanella, L.; Misiano, P.; Bigogno, C.; Rizzi, A.; Riccardi, B.;
Biscaioli, M.; Marchetti, S.; Puccini, P.; Catinella, S.; Rondelli, I.;
Cenacchi, V.; Bolzoni, P. T.; Caruso, P.; Villetti, G.; Facchinetti,
F.; DelGiudice, E.; Moretto, N.; Imbimbo, B. P. Synthesis and
Biological Activity of Flurbiprofen Analogues as Selective Inhibitors
of â-Amyloid1-42 Secretion. J. Med. Chem. 2005, 48, 5705-5720.
(15) Lanz, T. A.; Fici, G. J.; Merchant, K. M. Lack of Specific Amyloid-
beta(1-42) Suppression by Nonsteroidal Anti-Inflammatory Drugs
in Young, Plaque-Free Tg2576 Mice and in Guinea Pig Neuronal
Cultures. J. Pharmacol. Exp. Ther. 2005, 312, 399-406.
(16) Kukar, T.; Ladd, T.; Bann, M.; Fraering, P.; Kache, R.; Fauq, A.;
Wolfe, M.; Koo, E. H.; Golde, T. E. P4-289: Mechanistic Insights
into the in Vitro and in ViVo Modulation of Aâ42 Levels and Amyloid
Pathology by NSAIDS and Related Compounds. Alzheimer’s and
Dementia 2006, 2, S601-S602.
(17) Stock, N.; Munoz, B.; Wrigley, J. D. J.; Shearman, M. S.; Beher,
D.; Peachey, J.; Williamson, T. L.; Bain, G.; Chen, W.; Jiang, X.;
St-Jacques, R.; Prasit, P. The Geminal Dimethyl Analogue of
Flurbiprofen as a Novel Aâ42 Inhibitor and Potential Alzheimer’s
Disease Modifying Agent. Bioorg. Med. Chem. Lett. 2006, 16, 2219-
2223.
(18) Ricketts, A. P.; Lundy, K. M.; Seibel, S. B. Evaluation of Selective
Inhibition of Canine Cyclooxygenase 1 and 2 by Carprofen and Other
Nonsteroidal Anti-Inflammatory Drugs. Am. J. Vet. Res. 1998, 59,
1441-1446.
(19) Barten, D. M.; Guss, V. L.; Corsa, J. A.; Loo, A.; Hansel, S. B.;
Zheng, M.; Munoz, B.; Srinivasan, K.; Wang, B.; Robertson, B. J.;
Polson, C. T.; Wang, J.; Roberts, S. B.; Hendrick, J. P.; Anderson,
J. J.; Loy, J. K.; Denton, R.; Verdoorn, T. A.; Smith, D. W.;
Felsenstein, K. M. Dynamics of â-Amyloid Reductions in Brain,
Cerebrospinal Fluid, and Plasma of â-Amyloid Precursor Protein
Transgenic Mice Treated with a γ-Secretase Inhibitor. J. Pharmacol.
Exp. Ther. 2005, 312, 635-643.
(20) Beher, D.; Bettati, M.; Checksfield, G. D.; Churcher, I.; Doughty,
V. A.; Oakley, P. J.; Quddus, A.; Teall, M. R.; Wrigley, J. D.
Preparation of Tetrahydrocarbazole-1-Alkanoic Acids for the Treat-
ment of Alzheimer’s Disease and Related Conditions. WO 2005013985.
(21) Selkoe, D.; Kopan, R. Notch and Presenilin: Regulated Intra-
membrane Proteolysis Links Development and Degeneration. Annu.
ReV. Neurosci. 2003, 26, 565-597.
Acknowledgment. We thank the DFG (B.S. and R.N.,
SPP1085 (SCHM1012-3-1/2); C.H. and H.S., SFB596), the EU
(B.S. and R.N., APOPIS (LSHM-CT-2003-503330); C.H.,
APOPIS), and the BMBF (C.H., NGFN) for support of this
work.
Supporting Information Available: Synthetic procedure and
spectral data for the tested compounds and experimental procedure
for assay. This material is available free of charge via the Internet
References
(1) Haass, C. Take FivesBACE and the γ-Secretase Quartet Conduct
Alzheimer’s Amyloid â-Peptide Generation. EMBO J. 2004, 23,
483-488.
(2) Churcher, I.; Beher, D. γ-Secretase as a Therapeutic Target for the
Treatment of Alzheimer’s Disease. Curr. Pharm. Des. 2005, 11,
3363-3382.
(3) Weggen, S.; Eriksen, J. L.; Das, P.; Sagi, S. A.; Wang, R.; Pietrizik,
C. U.; Findlay, K. A.; Smith, T. E.; Murphy, M. P.; Bulter, T.; Kang,
D. E.; Marquez-Sterling, N.; Golde, T. E.; Koo, E. H. A Subset of
NSAIDs Lower Amyloidogenic Aâ42 Independently of Cyclooxy-
genase Activity. Nature 2001, 414, 212-216.
(4) Weggen, S.; Eriksen, J. L.; Sagi, S. A.; Pietrzik, C. U.; Golde, T. E.;
Koo, E. H. Aâ42-Lowering Nonsteroidal Anti-Inflammatory Drugs
Preserve Intramembrane Cleavage of the Amyloid Precursor Protein
(APP) and ErbB-4 Receptor and Signaling through the APP Intra-
cellular Domain. J. Biol. Chem. 2003, 278, 30748-30754.
(5) Eriksen, J. L.; Sagi, S. A.; Smith, T. E.; Weggen, S.; Das, P.;
McLendon, D. C.; Ozols, V. V.; Jessing, K. W.; Zavitz, K. H.; Koo,
E. H.; Golde, T. E. NSAIDs and Enantiomers of Flurbiprofen Target
γ-Secretase and Lower Aâ42 in Vivo. J. Clin. InVest. 2003, 112, 440-
449.
(6) Takahashi, Y.; Hayashi, I.; Tominari, Y.; Rikimaru, K.; Morohashi,
Y.; Kan, T.; Natsugari, H.; Fukuyama, T.; Tomita, T.; Iwatsubo, T.
Sulindac Sulfide Is a Noncompetitive γ-Secretase Inhibitor That
Preferentially Reduces Aâ42 Generation. J. Biol. Chem. 2003, 278,
18664-18670.
(7) Beher, D.; Clarke, E. E.; Wrigley, J. D. J.; Martin, A. C. L.; Nadin,
A.; Churcher, I.; Shearman, M. S. Selected Non-Steroidal Anti-
Inflammatory Drugs and Their Derivatives Target γ-Secretase at a
Novel Site: Evidence for an Allosteric Mechanism. J. Biol. Chem.
2004, 279, 43419-43426.
(8) in ’t Veld, B. A.; Ruitenberg, A.; Hofman, A.; Launer, L. J.; van
Duijn, C. M.; Stijnen, T.; Breteler, M. M. B.; Stricker, B. H. C.
Nonsteroidal Antiinflammatory Drugs and the Risk of Alzheimer’s
Disease. N. Engl. J. Med. 2001, 345, 1515-1521.
(9) Aisen, P. S.; Schafer, K. A.; Grundman, M.; Pfeiffer, E.; Sano, M.;
Davis, K. L.; Farlow, M. R.; Jin, S.; Thomas, R. G.; Thal, L. J. Effects
of Rofecoxib or Naproxen vs Placebo on Alzheimer Disease
Progression: A Randomized Controlled Trial. J. Am. Med. Assoc.
2003, 289, 2819-2826.
(22) Kopan, R.; Ilagan, M. X. γ-Secretase: Proteasome of the Membrane?
Nat. ReV. Mol. Cell Biol. 2004, 5, 499-504.
(23) Ertl, P.; Rohde, B.; Selzer, P. Fast Calculation of Molecular Polar
Surface Area as a Sum of Fragment-Based Contributions and Its
Application to the Prediction of Drug Transport Properties. J. Med.
Chem. 2000, 43, 3714-3717.
(24) Sastre, M.; Steiner, H.; Fuchs, K.; Capell, A.; Multhaup, G.; Condron,
M. M.; Teplow, D. B.; Haass, C. Presenilin-Dependent γ-Secretase
Processing of â-Amyloid Precursor Protein at a Site Corresponding
to the S3 Cleavage of Notch. EMBO J. 2001, 2, 835-841.
(25) Larbig, G.; Zall, A.; Schmidt, B. Inhibitors Designed for Presenilin
1 Utilizing by Means of Aspartic Acid Activation. HelV. Chim. Acta
2004, 87, 2334-2340.
(26) Boehm, H.-J., Schneider, G., Eds.; Virtual Screening for BioactiVe
Molecules; Wiley-VCH: Weinheim, Germany, 2000.
(27) Brockhaus, M.; Grunberg, J.; Rohrig, S.; Loetscher, H.; Wittenburg,
N.; Baumeister, R.; Jacobsen, H.; Haass, C. Caspase-Mediated
Cleavage Is Not Required for the Activity of Presenilins in
Amyloidogenesis and NOTCH Signaling. NeuroReport 1998, 9,
1481-1486.
JM0610200