P. Kirsch, A. Hahn, R. Fröhlich, G. Haufe
FULL PAPER
proximated by the long molecular axis. The correlation be-
tween ∆ε, the dipole moment µ, and the angle β between the
molecular dipole and the director is the following: ∆ε Ϸ ∆α –
F (µ2/2kT) (1–3cos2β) S; ∆α is the anisotropy of the polarizabil-
ity, S the order parameter: a) W. Maier, G. Meier, Z. Natur-
forschg. 1961, 16a, 262–267; b) D. Demus, G. Pelzl, Z. Chem.
1981, 21, 1–9.
Reviews: a) S. G. Lal, G. P. Pez, R. G. Syvret, Chem. Rev. 1996,
96, 1737; b) S. D. Taylor, C. C. Kotoris, G. Hum, Tetrahedron
1999, 12431–12477; c) P. Kirsch, Modern Fluoroorganic Chem-
istry: Synthesis Reactivity, Applications, Wiley-VCH,
Weinheim, Germany, 2004, p. 73 ff, and references therein.
For a similar reaction sequence, see J. Hannah, R. L. Tolman,
J. D. Karkas, R. Liou, H. C. Perry, A. K. Field, J. Heterocycl.
Chem. 1989, 26, 1261–1271.
(2.3 mL), and the mixture was warmed to room temperature. Satu-
rated aqueous NaHCO3 (50 mL) was added. The reaction was
stirred for 15 min, the organic layer separated, and the aqueous
layer extracted with CH2Cl2. The organic phases were combined,
washed with water, dried with Na2SO4, and the solvents evaporated
to dryness. The crude product (10 g) was purified by chromatog-
raphy (silica gel, n-heptane/methyl tert-butyl ether 4:1) and sub-
sequently crystallized from n-heptane/methyl tert-butyl ether (4:1)
at –20 °C to furnish product 15 (2.9 g, 48%) as colorless crystals
(99.5% purity by HPLC). M.p. 97 °C (n-heptane/methyl tert-butyl
ether 4:1). 1H NMR (250 MHz, CDCl3, 303 K): δ = 4.48 (t, J =
5.5 Hz, 1 H), 4.04 (t, J = 12.8 Hz, 2 H), 3.62 (dd, J = 36.2 Hz, J
= 13.0 Hz, 2 H), 1.75–1.68 (m, 2 H), 1.65–1.52 (m, 4 H), 1.45–1.05
(m, 12 H), 0.84 (t, J = 7.1 Hz, 3 H), 0.74 (t, J = 7.1 Hz, 3 H) ppm.
[7]
[8]
[9]
R. Noyori, S. Murata, M. Suzuki, Tetrahedron 1981, 37, 3899–
3910.
P. Kirsch, E. Poetsch, Adv. Mater. 1998, 10, 602–606.
13C NMR (75 MHz, CDCl3, 303 K): δ = 102.5, 91.3 (d, JC,F
=
182.9 Hz), 71.8 (d, JC,F = 22.8 Hz), 42.5 (d, JC,F = 20.5 Hz), 40.4,
37.8, 37.6, 33.6, 26.5 (d, JC,F = 3.6 Hz), 20.8, 18.3, 15.3, 14.9 ppm.
19F NMR (235 MHz, CDCl3, 300 K): δ = –175.60 (mc, 1F) ppm.
MS (EI = 70 eV): m/z (%) = 271 (10) [M – H]+, 229 (100), 170 (7),
163 (15), 123 (8), 121 (9), 107 (11), 81 (15), 69 (16), 67 (14), 55
(18), 43 (14), 41 (18).
[10]
[11] The “virtual” parameters TNI,virt, ∆εvirt, and ∆nvirt were deter-
mined by linear extrapolation from a 5% w/w solution in the
commercially available Merck mixture ZLI-4792 (TNI
=
92.8 °C, ∆ε = 5.3, ∆n = 0.0964). The ∆εvirt values for the dielec-
trically negative compounds were obtained from ZLI-2857 (TNI
= 82.3 °C, ∆ε = –1.42, ∆n = 0.0776). The extrapolated values
are empirically corrected for the differences in the order param-
eter which are induced by the analyte. For the pure substances,
the phase transition temperatures were determined by differen-
tial scanning calorimetry (DSC), the mesophase types were as-
signed by optical polarization microscopy.
16: By the same method with trans-4-propylcyclohexyl carbal-
dehyde as the aldehyde component, 16 (38%) was obtained as col-
orless crystals (99.6% purity by HPLC). M.p. 109 °C (n-heptane/
1
methyl tert-butyl ether 4:1). H NMR (250 MHz, CDCl3, 303 K):
δ = 4.06–3.97 (m, 3 H), 3.58 (dd, J = 35.3 Hz, J = 13.2 Hz, 2 H),
1.83–1.55 (m, 8 H), 1.44–0.88 (m, 20 H), 0.80 (mc, 6 H) ppm. 13C
[12] a) Crystal structure data for 3 (C16H29FO2), by crystallization
from n-hexane: monoclinic, P21/n, a = 4.841(1) Å, b =
9.731(1) Å, c = 35.171(1) Å, α = γ = 90°, β = 92.47(1)°, V =
1655.3(4) Å3, Z = 4, ρcalcd. = 1.093 g·cm–1, R(F) = 6.5% for
2709 observed independent reflections (2.17°ՅϑՅ25.00°).
The data were collected at 198 K. b) Crystal structure data for
17 (C22H40F2), by crystallization from n-heptane: monoclinic,
P21/n, a = 19.016(4) Å, b = 5.0060(10) Å, c = 22.038(4) Å, α =
NMR (75 MHz, CDCl3, 303 K): δ = 104.0, 89.6 (d, JC,F
=
180.7 Hz), 70.1 (d, JC,F = 22.7 Hz), 41.4, 40.7 (d, JC,F = 20.4 Hz),
38.9, 38.7, 36.5, 36.0, 31.9, 31.7, 26.5, 24.8, 24.7, 19.2, 19.1, 13.5
ppm. 19F NMR (235 MHz, CDCl3, 300 K): δ = –175.65 (mc, 1F)
ppm. MS (EI = 70 eV): m/z (%) = 353 (3) [M – H]+, 229 (100), 163
(10), 107 (5), 81 (9), 69 (14), 55 (12), 41 (9).
γ = 90°, β = 100.79(3)°, V = 2060.8(7) Å3, Z = 4, ρcalcd.
=
1.104 g·cm–1, R(F) = 5.7% for 4209 observed independent re-
flections (2.82°ՅϑՅ74.39°). The data were collected at 223 K.
CCDC-607632 (3) and CCDC-607631 (17) contain the supple-
mentary crystallographic data for this paper. These data can
be obtained free of charge from The Cambridge Crystallo-
graphic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
[13] Gaussian 98, Revision A.6: M. J. Frisch, G. W. Trucks, H. B.
Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G.
Zakrzewski, J. A. Montgomery Jr, R. E. Stratmann, J. C. Bu-
rant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin,
M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R.
Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J.
Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma,
D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman,
J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko,
P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox,
T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C.
Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W.
Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gor-
don, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh,
PA, USA, 1998. The minimum geometries were optimized at
the B3LYP/6-31G(d) level of theory, and were verified to have
only positive eigenfrequencies. The energies were calculated at
the B3LYP/6-311+G(2d,p) level of theory, with the B3LYP/6-
31G(d) geometries and zero-point energies.
Acknowledgments
We thank Dr. J. Krause, V. Reiffenrath, J. Haas, H. Heldmann, K.
Altenburg, and Dr. M. Klasen-Memmer for the physical evaluation
of the newly synthesized substances, and Dr. M. Bremer for the
helpful discussions of the DFT calculations. Part of this work was
supported by the German Bundesministerium für Bildung und
Forschung (01 B 621/1).
[1] a) D. Pauluth, K. Tarumi, J. Mater. Chem. 2004, 14, 1219–
1227; b) D. Pauluth, K. Tarumi, J. SID 2005, 13, 693–702.
[2] a) P. Kirsch, M. Bremer, Angew. Chem. 2000, 112, 4384–4405;
Angew. Chem. Int. Ed. 2000, 39, 4216–4235.
[3] a) A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K.
Ohmuro, Y. Koike, T. Sasabayashi, K. Okamoto, SID ’98 Di-
gest 1998, 1077; b) Y. Ishii, S. Mizushima, M. Hijikigawa, SID
’01 Digest 2001, 1090; c) K. H. Kim, K. Lee, S. B. Park, J. K.
Song, S. Kim, J. D. Souk, Asia Display 1998, 383; d) P. Kirsch,
V. Reiffenrath, M. Bremer, Synlett 1999, 389–396.
[4] M. Bremer, L. Lietzau, New J. Chem. 2005, 29, 72–74.
[5] a) P. Kirsch, K. Tarumi, Angew. Chem. 1998, 110, 501–506;
Angew. Chem. Int. Ed. Engl. 1998, 37, 484–489; b) P. Kirsch,
K. Tarumi, Liquid Cryst. 1999, 26, 449–452; c) R. W.
Hoffmann, T. Brandl, P. Kirsch, K. Harms, Synlett 2001, SI, [14] A similar effect caused by the destabilization of a cationic in-
960–963.
termediate is described in: A. Burchardt, T. Takahashi, Y.
Takeuchi, G. Haufe, J. Org. Chem. 2001, 66, 2078–2084.
Received: June 20, 2006
[6] The dielectric anisotropy is defined as ∆ε = εʈ –εЌ, the birefrin-
gence as ∆n = nʈ –nЌ, where ʈ stands for parallel and Ќ stands
for perpendicular to the nematic phase director, which is ap-
Published Online: August 24, 2006
4824
www.eurjoc.org
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2006, 4819–4824