3704
X.-F. Wu et al. / Tetrahedron Letters 52 (2011) 3702–3704
Angew. Chem., Int. Ed. 2005, 44, 4442–4489; (i) Torborg, C.; Beller, M. Adv. Synth.
PhNH2
tert-BuONO
AcOH
PhN2OAc
Catal. 2009, 351, 3027–3043; (j) Zapf, A.; Beller, M. Top. Catal. 2002, 19, 101–
109; (k) Tucker, C. E.; de Vries, J. G. Top. Catal. 2002, 19, 111–118.
2. Wu, X.-F.; Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2010,
49, 9047–9050.
3. For reviews on palladium-catalyzed carbonylations see: (a) Grigg, R.; Mutton, S.
P. Tetrahedron 2010, 66, 5515–5548; (b) Brennführer, A.; Neumann, H.; Beller,
M. Angew. Chem., Int. Ed. 2009, 48, 4114–4133; (c) Brennführer, A.; Neumann,
H.; Beller, M. ChemCatChem 2009, 1, 28–41; (d) Skoda-Földes, R.; Kollár, L. Curr.
Org. Chem. 2002, 6, 1097–1119; (e) Beller, M.; Cornils, B.; Frohning, C. D.;
Kohlpaintner, C. W. J. Mol. Catal. A: Chem. 1995, 104, 17–85.
L = P(o-Tolyl)3
O
Pd0Ln
1
Ph
O
Ph
N
H
5
N2
L
Ph
L
Pd NH
L
Ph Pd OAc
Ph
4. Roglans, A.; Pla-Quintana, A.; Moreno-Manas, M. Chem. Rev. 2006, 106, 4622–
4643.
4
L
2
5. (a) Nagira, K.; Kikukawa, K.; Wada, F.; Matsuda, T. J. Org. Chem. 1980, 45, 2365–
2368; (b) Kikukawa, K.; Kono, K.; Nagira, K.; Wada, F.; Matsuda, T. J. Org. Chem.
1981, 46, 4413–4416; (c) Kikukawa, K.; Kono, K.; Nagira, K.; Wada, F.; Matsuda,
T. Tetrahedron Lett. 1980, 21, 2877–2878.
6. Siegrist, U.; Rapold, T.; Blaser, H. Org. Process Res. Dev. 2003, 7, 429–431.
7. Sengupta, S.; Sadhukhan, S. K.; Bhattacharyya, S.; Guha, J. J. Chem. Soc., Perkin
Trans. 1 1998, 407–410.
8. (a) Kikikawa, K.; Totoki, T.; Wada, F.; Matsuda, T. J. Organomet. Chem. 1984, 270,
283–287; (b) Herr, R. J.; Fairfax, D. J.; Meckler, H.; Wilson, J. D. Org. Process Res.
Dev. 2002, 6, 677–681.
AcOH
CO
3
L
O
Pd OAc
L
PhNH2
Ph
Scheme 1. Proposed reaction mechanism.
9. (a) Kikukawa, K.; Idemoto, T.; Katayama, A.; Kono, K.; Wada, F.; Matsuda, T. J.
Chem. Soc., Perkin Trans. 1 1987, 1511–1514; (b) Kikukawa, K.; Kono, K.; Wada,
F.; Matsuda, T. Chem. Lett. 1982, 35–36.
of the C–X bond and isolated yields of 78–96% of halo-substituted
N-aryl benzamides were achieved (Table 3, entries 8 and 9). Unfor-
tunately, applying heterocyclic anilines no amides were obtained.
Instead, only the corresponding reduced product is detected. For
example, 5-amino-benzothiazole resulted in the formation of
benzothiazole.
With respect to the mechanism (Scheme 1) we assume that the
in situ generated PhN2OAc undergoes oxidative addition to Pd0 1,
which is easily formed from Pd(OAc)2 and the phosphine ligand,
to form aryl palladium(II) species 2. Subsequent coordination and
insertion of carbon monoxide forms the acyl palladium complex
3. Exchange of acetate by aniline should give complex 4 and final
reductive elimination leads to the terminal product 5 and regener-
ates the catalyst Pd0 1.
In conclusion, we have developed the first aminocarbonylation
of anilines to N-aryl benzamides. The procedure proceeds via
in situ formation of aryldiazonium salts, from abundantly available
anilines and subsequent palladium-catalyzed carbonylation under
base-free conditions at low temperature. 11 different N-aryl benz-
amides have been isolated in 30–96% yield.
10. Andrus, M. B.; Ma, Y.; Zang, Y.; Song, C. Tetrahedron Lett. 2002, 43, 9137–9140.
11. Ma, Y.; Song, C.; Chai, Q.; Ma, C.; Andrus, M. B. Synthesis 2003, 2886–2889.
12. (a) Wu, X.-F.; Neumann, H.; Beller, M. ChemCatChem 2010, 2, 509–513;
(b) Wu, X. –F.; Neumann, H.; Beller, M. Chem. Eur. J. 2010, 16, 9750–9753; (c)
Wu, X. –F.; Neumann, H.; Beller, M. Chem. Asian J. 2010, 5, 2168–2172; (d) Wu,
X.-F.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 5284–5288; (e)
Wu, X. –F.; Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2010,
49, 7316–7319; (f) Wu, X.-F.; Neumann, H.; Beller, M. Chem. Eur. J. 2010, 16,
12104–12107; (g) Wu, X.-F.; Neumann, H.; Beller, M. Tetrahedron Lett. 2010, 51,
6146–6149; (h) Wu, X.-F.; Neumann, H.; Spannenberg, A.; Schulz, T.; Jiao, H.;
Beller, M. J. Am. Chem. Soc. 2010, 132, 14596–14602; (i) Wu, X.-F.; Sundararaju,
B.; Neumann, H.; Dixneuf, P. H.; Beller, M. Chem. Eur. J. 2011, 17, 106–110; (j)
Wu, X.-F.; Neumann, H.; Beller, M. Adv. Synth. Catal. 2011, 353, 788–792; (k)
Wu, X.-F.; Jiao, H.; Neumann, H.; Beller, M. ChemCatChem 2011, 3, 726–733.
13. See for examples: N-aryl amides; The Merck Index, 11th ed., Merck, Rahway,
USA, 1989.
14. Typical reaction procedure for carbonylation reaction of aniline: Pd(OAc)2
(2 mol %) and P(o-Tolyl)3 (4 mol %) were transferred into a vial (4 mL reaction
volume) equipped with a septum, a small cannula and a stirring bar. After the
vial was purged with argon, DMF (distilled from sodium ketyl, 2 mL), aniline
(2.3 mmol), tert-butyl nitrite (1.3 mmol), and AcOH (1.3 mmol) were injected
into the vial by syringe. Then, the vial was placed in an alloy plate, which was
transferred into a 300 mL autoclave of the 4560 series from Parr InstrumentsÒ
under argon atmosphere. After flushing the autoclave three times with CO, a
pressure of 10 bar was adjusted and the reaction was performed for 16 h at
50 °C. After the reaction, the autoclave was cooled down to room temperature
and the pressure was released carefully. To the reaction mixture 6 mL water
were added and the solution was extracted 3–5 times with 2–3 mL of ethyl
acetate. The extracts were evaporated with adsorption on silica gel and the
crude product was purified by column chromatography using n-heptane and n-
heptane/AcOEt (4:1) as the eluent. 1H NMR (300 MHz, CDCl3): d 10.26 (s, 1H),
7.93–7.99 (m, 2H), 7.76–7.83 (m, 2H), 7.49–7.63 (m, 3H), 7.32–7.39 (m, 2H),
7.11 (t, 1H, J = 7.44 Hz). 13C NMR (75 MHz, CDCl3): d 165.5, 139.1, 134.9, 131.5,
128.6, 128.3, 127.6, 123.6, 120.3. GC–MS (EI, 70eV): m/z (%) = 197 (M+, 60), 105
(100), 77 (40).
Acknowledgments
The authors thank the state of Mecklenburg-Vorpommern, the
Bundesministerium für Bildung und Forschung (BMBF) and the
DFG (Leibniz price) for financial support. We also thank Drs. W.
Baumann, C. Fischer (LIKAT) for analytical support.
15. For selected examples on palladium-catalyzed aminocarbonylation of aryl
halides see: (a) Martinelli, J. R.; Clark, T. P.; Watson, D. A.; Munday, R. H.;
Buchwald, S. L. Angew. Chem., Int. Ed. 2007, 46, 8460–8463; (b) Tambade, P. J.;
Patil, Y. P.; Bhanage, B. M. Appl. Organomet. Chem. 2009, 23, 235–240; (c)
Szilágyi, A.; Farkas, R.; Petz, A.; Kollár, L. Tetrahedron 2009, 65, 4484–4489; (d)
Salvadori, J.; Balducci, E.; Zaza, S.; Petricci, E.; Taddei, M. J. Org. Chem. 2010, 75,
1841–1847; (e) Martinelli, J. P.; Watson, D. A.; Freckmann, D. M. M.; Barder, T.
E.; Buchwald, S. L. J. Org. Chem. 2008, 73, 7102–7107.
References and notes
1. For selected reviews see: (a) Alonso, F.; Beletskaya, I. P.; Yus, M. Tetrahedron
2008, 64, 3047–3101; (b) Rollet, P.; Kleist, W.; Dufaud, V.; Djakovitch, L. J. Mol.
Catal. 2005, 241, 39–51; (c) Zapf, A.; Beller, M. Chem. Commun. 2005, 431–440;
(d) Frisch, A.; Beller, M. Angew. Chem., Int. Ed. 2005, 44, 674–688; (e) Negishi, E.;
Anastasia, L. Chem. Rev. 2003, 103, 1979–2017; (f) Surry, D. S.; Buchwald, S. L.
Angew. Chem., Int. Ed. 2008, 47, 6338–6361; (g) Doucet, H.; Hierso, J.-C. Angew.
Chem., Int. Ed. 2007, 46, 834–871; (h) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D.