Beilstein J. Org. Chem. 2013, 9, 1883–1890.
References
clization in flow using the optimised conditions for the simpler
stilbenes. In the [5]helicene series, in each case only one pro-
duct was isolated in moderate to good yield. The bromoolefin
1o gave exclusively the desired helicene 2o, but in the case of
methyl- and methoxyolefins 1p and 1q, only the corresponding
benzo[ghi]perylenes 2p and 2q were observed.
Benzo[ghi]perylenes are typical byproducts observed in the
photocyclization of [5]helicene-like molecules. Reactions to
obtain selectively helicenes or benzo[ghi]perylenes, regardless
of the substitution pattern, are still a challenging task. A func-
tionalizable [6]helicene (2r) was obtained along with its ribbon-
like regioisomer 2r’ in a 1:1 ratio and 75% combined yield.
1. Shen, Y.; Chen, C.-F. Chem. Rev. 2012, 112, 1463–1535.
2. Gingras, M. Chem. Soc. Rev. 2013, 42, 968–1006.
3. Gingras, M.; Félix, G.; Peresutti, R. Chem. Soc. Rev. 2013, 42,
4. Gingras, M. Chem. Soc. Rev. 2013, 42, 1051–1095.
5. Moorthy, J. N.; Mandal, S.; Mukhopadhyay, A.; Samanta, S.
See for a recent example of application of a carbohelicene in optics.
6. Scholz, M.; Mühlstädt, M.; Dietz, F. Tetrahedron Lett. 1967, 8,
7. Flammang-Barbieux, M.; Nasielski, J.; Martin, R. H. Tetrahedron Lett.
8. Liu, L.; Yang, B.; Katz, T. J.; Poindexter, M. K. J. Org. Chem. 1991, 56,
In order to demonstrate the utility of the flow process we
decided to scale up the synthesis of helical compound 2o. To
our delight, we observed that the [5]helicene precursor 1o
underwent photocyclization with considerably shorter retention
times compared to the standard stilbene derivatives (Scheme 3).
Thus, we prepared the [5]helicene derivative 2o with up to 60
9. Terfort, A.; Görls, H.; Brunner, H. Synthesis 1997, 79–86.
10.Reetz, M. T.; Sostmann, S. J. Organomet. Chem. 2000, 603, 105–109.
11.El Abed, R.; Ben Hassine, B.; Genêt, J.-P.; Gorsane, M.; Marinetti, A.
12.El Abed, R.; Aloui, F.; Genêt, J.-P.; Ben Hassine, B.; Marinetti, A.
J. Organomet. Chem. 2007, 692, 1156–1160.
13.Stará, I. G.; Alexandrová, Z.; Teplý, F.; Sehnal, P.; Starý, I.; Šaman, D.;
Buděšínský, M.; Cvaèka, J. Org. Lett. 2005, 7, 2547–2550.
14.Míšek, J.; Teplý, F.; Stará, I. G.; Tichý, M.; Šaman, D.; Císařová, I.;
Vojtíšek, P.; Starý, I. Angew. Chem. 2008, 120, 3232–3235.
Angew. Chem., Int. Ed. 2008, 47, 3188–3191.
15.Weimar, M.; Correa da Costa, R.; Lee, F.-H.; Fuchter, M. J. Org. Lett.
Scheme 3: Scale up synthesis of the [5]helicene derivative 2o.
16.Li, H.; He, K.-H.; Liu, J.; Wang, B.-Q.; Zhao, K.-Q.; Hu, P.; Shi, Z.-J.
17.Matsushita, Y.; Ichimura, T.; Ohba, N.; Kumada, S.; Sakeda, K.;
Suzuki, T.; Tanibata, H.; Murata, T. Pure Appl. Chem. 2007, 79,
Conclusion
In summary, we have developed a new photo-flow method-
ology [28-32] for the synthesis of phenanthrenes and helicenes.
Although photocyclization of stilbene derivatives was disclosed
more than 40 years ago, this is the first report of UV-light-
driven photocyclization in flow. In general phenantrenes as well
as [4]-, [5]- and [6]helicenes with different substitution patterns
are obtained in good to excellent yields. In addition our first
attempts to scale up the flow photocyclization reactions were
successful providing the opportunity for multi-gram syntheses.
18.Oelgemöller, M.; Shvydkiv, O. Molecules 2011, 16, 7522–7550.
19.Knowles, J. P.; Elliott, L. D.; Booker-Milburn, K. I.
20.Oelgemöller, M. Chem. Eng. Technol. 2012, 35, 1144–1152.
21.Shvydkiv, O.; Oelgemöller, M. Microphotochemistry: Photochemical
Synthesis in Microstructed Flow Reactors. In CRC Handbook of
Organic Photochemistry and Photobiology; Griesbeck, A.;
Oelgemöller, M.; Ghetti, F., Eds.; CRC Press: Boca Raton, FL, USA,
2012; pp 125–178.
Supporting Information
22.Hernandez-Perez, A. C.; Vlassova, A.; Collins, S. K. Org. Lett. 2012,
Supporting Information File 1
Experimental part.
23.Talele, H. R.; Gohil, M. J.; Bedekar, A. V. Bull. Chem. Soc. Jpn. 2009,
24.Talele, H. R.; Chaudhary, A. R.; Patel, P. R.; Bedekar, A. V. ARKIVOC
1889