C O M M U N I C A T I O N S
The 13% hydrated films (w/w, weight of absorbed water to weight
of the dry film) clearly show that the hydrated films are much more
extensible. Young’s modulus decreases significantly with hydration:
∼200 MPa for polymers P-1 and P-2 with 13% of hydration.
Polymer P-3 is much softer after hydration. Young’s modulus is
∼50 MPa for the hydrated films of P-3. After yielding at 4-5%
strain, the hydrated samples undergo a large deformation. The films
can be pulled up to 3 times its length before rupturing for the
hydrated films of P-1 and P-3 (curves d and f in Figure 4). While
these samples are not recoverable because of the lack of cross-
links like those found in the noncross-linking ELPs, the transition
from brittle to highly extensible behavior is what one would expect
for a noncross-linked elastomeric polymer, as reported for native
and synthetic ELPs.21
While the EMPs in dry form are very stiff and nonextensible,
partial hydration (13 wt %) significantly lowers Young’s modulus
and dramatically increases their extensibility. Due to the lack of
any cross-linking, further hydration makes the samples too soft for
stress-strain analysis. Instead, the fully hydrated P-1 was charac-
terized by rheological analysis. The results show that it has typical
viscoelastic properties at 40 °C. Its storage modulus (G′ ≈ 5 MPa)
is close to the value of native elastin in fully hydrated form.22 The
relatively small tan δ value (∼0.1) for P-1 also strongly supports
that the gel has good elastomeric properties (see Figure S4 in
Supporting Information).
Two important observations are worth noting in the physical
property studies of the EMPs. First, despite their dramatic difference
in local secondary structure in solution (Figure 2), P-1, P-2, and
P-3 display similar behavior in LCST and mechanical performance,
suggesting that local secondary structure is not essential for elasticity
in EMPs. This agrees with the highly dynamic nature and lack of
long-range order for elastin. A recent investigation of (VPGVG)3
peptides by solid state NMR confirmed that an ensemble of dynamic
conformations coexists in solid state with only a minor fraction
existing in a compact ꢀ-turn conformation.12a Second, our results
confirm that hydration plays a critical role in the elasticity of elastin.
Similar to natural elastin, simple hydration converts P-1, P-2, and
P-3 from very brittle into very ductile. Presumably, solvation of
backbone amide bonds by water reduces main chain/main chain
hydrogen bonds, hence, making the polymer chains more dynamic.
In the meantime, the interaction of water molecules with hydro-
phobic side chains, i.e., hydrophobic hydration, provides the entropic
driving force for both the elasticity and LCST behavior observed.12,19
In summary, we have demonstrated a novel bioinspired synthesis
of EMPs. The unique molecular design enables us to probe
important mechanistic questions and assess the structure-property
relationship of EMPs. Our results indicate that polymer conforma-
tion is not essential for the elasticity of EMPs. Instead, our data
confirm that hydrophobic hydration, as opposed to an organized
secondary structure, plays a critical role for the elasticity. The
bioinspired polymers can be conveniently prepared through a
modular approach using “click chemistry”. Despite the introduction
of nonpeptido linkages, the bioinspired EMPs fully preserve critical
features of native elastin: the LCST behavior in aqueous solution
and high elasticity in bulk. The simple modular synthesis provides
an efficient approach to access a broad range of elastin-mimic
polymers for many potential biomaterials applications.
Acknowledgment. We thank the Department of Energy - Basic
Energy Sciences (DE-FG02-04ER46162) for the generous financial
support. We thank Prof. A. Summers for the use of the mechanical
test instrument, Dr. P. Dennison for the assistance with NMR
experiments, Dr. J. Greave for mass spectroscopy, Dr. W. van der
Veer for the help with CD and LCST experiments, and Aaron
Kushner for helpful discussions and manuscript revision.
Supporting Information Available: Experimental details of syn-
thesis and characterization of monomers and polymers. This material
References
(1) (a) Li, B.; Daggett, V. J. Muscle Res. Cell Motil. 2002, 23, 561–573. (b)
Gosline, J.; Lillie, M.; Carrington, E.; Guerette, P.; Ortlepp, C.; Savage,
K. Philos. Trans. R. Soc. London, Ser. B 2002, 357, 121–132. (c) Urry,
D. W.; Hugel, T.; Seitz, M.; Gaub, H. E.; Sheiba, L.; Dea, J.; Xu, J.; Parker,
T. Philos. Trans. R. Soc. London, Ser. B 2002, 357, 169–184.
(2) (a) Urry, D. W. J. Protein Chem. 1988, 7, 1–34. (b) Urry, D. W. J. Protein
Chem. 1988, 7, 81–114.
(3) (a) Yamaoka, T.; Tamura, T.; Seto, Y.; Tada, T.; Kunugi, S.; Tirrell, D. A.
Biomacromolecules 2003, 4, 1680–1685. (b) Urry, D. W. J. Phys. Chem.
B 1997, 101, 11007–11028. (c) Meyer, D. E.; Chilkoti, A. Biomacromol-
ecules 2004, 5, 846–851.
(4) Chow, D.; Nunalee, M. L.; Lim, D. W.; Simnick, A. J.; Chilkoti, A. Mater.
Sci. Eng., R 2008, 62, 125–155.
(5) (a) Wu, Y.; Mackay, J. A.; McDaniel, J. R.; Chilkoti, A.; Clark, R. L.
Biomacromolecules 2009, 10, 19–24. (b) Dandu, R.; Ghandehari, H. Prog.
Polym. Sci. 2007, 32, 1008–1030. (c) Wright, E. R.; Conticello, V. P. AdV.
Drug DeliVery ReV. 2002, 54, 1057–1073.
(6) (a) Lim, D. W.; Nettles, D. L.; Setton, L. A.; Chilkoti, A. Biomacromol-
ecules 2008, 9, 222–230. (b) Daamen, W. F.; Veerkamp, J. H.; van Hest,
J. C. M.; van Kuppevelt, T. H. Biomaterials 2007, 28, 4378–4398. (c)
Grieshaber, S. E.; Farran, A. J. E.; Lin-Gibson, S.; Kiick, K. L.; Jia, X.
Macromolecules 2009, 42, 2532–2541. (d) Martin, L.; Alonso, M.; Moeller,
M.; Rodriguez-Cabello, J. C.; Mela, P. Soft Matter 2009, 5, 1591–1593.
(7) Rodriguez-Cabello, J. C.; Reguera, J.; Girotti, A.; Alonso, M.; Testera,
A. M. Prog. Polym. Sci. 2005, 30, 1119–1145.
(8) Okamoto, K.; Urry, D. W. Biopolymers 1976, 15, 2337–2351.
(9) (a) Hoeve, C. A. J.; Flory, P. J. Biopolymers 1974, 13, 677–686. (b) Weis-
Fogh, T.; Andersen, S. O. Nature 1970, 227, 718–721. (c) Gray, W. R.;
Sandberg, L. B.; Foster, J. A. Natrue 1973, 246, 461–466. (d) Gosline,
J. M. Biopolymers 1978, 17, 677–695.
(10) Torchia, D. A.; Piez, K. A. J. Mol. Biol. 1973, 76, 419–424.
(11) (a) Urry, D. W.; Cunningham, W. D.; Ohnishi, T. Biochemistry 1974, 13,
609–616. (b) Cook, W. J.; Einspahr, H.; Trapane, T. L.; Urry, D. W.; Bugg,
C. E. J. Am. Chem. Soc. 1980, 102, 5502–5505. (c) Urry, D. W.; Trapane,
T. L.; Sugano, H.; Prasad, K. U. J. Am. Chem. Soc. 1981, 103, 2080–
2089. (d) Venkatachalam, C. M.; Urry, D. W. Macromolecules 1981, 14,
1225–1229.
(12) (a) Yao, X. L.; Hong, M. J. Am. Chem. Soc. 2004, 126, 4199–4210. (b)
Li, B.; Alonso, D. O. V.; Daggett, V. J. Mol. Biol. 2001, 305, 581–592.
(c) Li, B.; Alonso, D. O. V.; Bennion, B. J.; Daggett, V. J. Am. Chem.
Soc. 2001, 123, 11991–11998.
(13) (a) Pochan, D. J.; Schneider, J. P.; Kretsinger, J.; Ozbas, B.; Rajagopal,
K.; Haines, L. J. Am. Chem. Soc. 2003, 125, 11802–11803. (b) Lamm,
M. S.; Rajagopal, K.; Schneider, J. P.; Pochan, D. J. J. Am. Chem. Soc.
2005, 127, 16692–16700.
(14) Karle, I. L.; Awasthi, S. K.; Balaram, P. Proc. Natl. Acad. Sci. U.S.A. 1996,
93, 8189–8193.
(15) (a) Kolb, H. C.; Finn, M. C.; Sharpless, K. B. Angew. Chem., Int. Ed.
2001, 40, 2004–2021. (b) Angell, Y. L.; Burgess, K. Chem. Soc. ReV. 2007,
36, 1674–1689.
(16) Arad, O.; Goodman, M. Biopolymers 1990, 29, 1651–1668.
(17) (a) Tamburro, A. M.; Bochicchio, B.; Pepe, A. Biochemistry 2003, 42,
13347–13362. (b) Bochicchio, B.; Pepe, A.; Tamburro, A. M. Chirality
2008, 20, 985–994.
(18) Urry, D. W.; Trapane, T. L.; Prasad, K. U. Biopolymers 1985, 24, 2345–
2356.
(19) Yao, X. L.; Conticello, V. P.; Hong, M. Magn. Reson. Chem. 2004, 42,
267–275.
(20) Valiaev, A.; Lim, D. W.; Schmidler, S.; Clark, R. L.; Chilkoti, A.; Zauscher,
S. J. Am. Chem. Soc. 2008, 130, 10939–10946.
(21) Sallach, R. E.; Cui, W.; Wen, J.; Martinez, A.; Conticello, V. P.; Chaikof,
E. L. Biomaterials 2009, 30, 409–422.
(22) Gosline, J. M.; French, C. J. Biopolymers 1979, 18, 2091–2103.
JA9104446
9
J. AM. CHEM. SOC. VOL. 132, NO. 13, 2010 4579